Microfluidic paper-based analytical devices (μPADs) are a versatile and inexpensive point-of-care (POC) technology, but their widespread adoption has been limited by slow flow rates and the inability to carry out complex in field analytical measurements. In the present work, we investigate multilayer μPADs as a means to generate enhanced flow rates within self-pumping paper devices. Through optical and electrochemical measurements, the fluid dynamics are investigated and compared to established flow theories within μPADs.
View Article and Find Full Text PDF