Publications by authors named "Elif Ozden-Yenigun"

Purpose: The aim of this study was to determine the effect of solid (one-piece) and two-piece abutments on the stress profile of narrow implants with marginal bone loss.

Materials And Methods: Solid and two-piece abutments were connected to a conical internal octagon-connection implant (3.3 mm in diameter, 10 mm in length) and restored with a single crown.

View Article and Find Full Text PDF

Electronic textiles have become a dynamic research field in recent decades, attracting attention to smart wearables to develop and integrate electronic devices onto clothing. Combining traditional screen-printing techniques with novel nanocarbon-based inks offers seamless integration of flexible and conformal antenna patterns onto fabric substrates with a minimum weight penalty and haptic disruption. In this study, two different fabric-based antenna designs called PICA and LOOP were fabricated through a scalable screen-printing process by tuning the conductive ink formulations accompanied by cellulose nanocrystals.

View Article and Find Full Text PDF

Interactive clothing requires sensing and display functionalities to be embedded on textiles. Despite the significant progress of electronic textiles, the integration of optoelectronic materials on fabrics remains as an outstanding challenge. In this Letter, using the electro-optical tunability of graphene, we report adaptive optical textiles with electrically controlled reflectivity and emissivity covering the infrared and near-infrared wavelengths.

View Article and Find Full Text PDF

We study the causes of the observed tunable hydrophobicity of poly(styrene-co-perfluoroalkyl ethylacrylate) electrosprayed in THF, DMF, and THF:DMF (1:1) solvents. Under the assumption that equilibrium morphologies in the solvent significantly affect the patterns observed on electrosprayed surfaces, we use atomistic and coarse-grained simulations supported by dynamic light scattering (DLS) experiments to focus on the parameters that affect the resulting morphology of superhydrophobic electrosprayed beads. The differing equilibrium chain size distributions in these solvents examined by DLS are corroborated by chain dimensions obtained via molecular dynamics simulations.

View Article and Find Full Text PDF

Strengthened nanofiber-reinforced epoxy matrix composites are demonstrated by engineering composite electrospun fibers of multi-walled carbon nanotubes (MWCNTs) and reactive P(St-co-GMA). MWCNTs are incorporated into surface-modified, reactive P(St-co-GMA) nanofibers by electrospinning; functionalization of these MWCNT/P(St-co-GMA) composite nanofibers with epoxide moieties facilitates bonding at the interface of the cross-linked fibers and the epoxy matrix, effectively reinforcing and toughening the epoxy resin. Rheological properties are determined and thermodynamic stabilization is demonstrated for MWCNTs in the P(St-co-GMA)-DMF polymer solution.

View Article and Find Full Text PDF