The importance of phonons in the strong correlation phenomena observed in twisted-bilayer graphene (TBG) at the so-called magic-angle is under debate. Here we apply gate-dependent micro-Raman spectroscopy to monitor the G band line width in TBG devices of twist angles θ = 0° (Bernal), ∼1.1° (magic-angle), and ∼7° (large-angle).
View Article and Find Full Text PDFNear field scanning Microwave Impedance Microscopy can resolve structures as small as 1 nm using radiation with wavelengths of 0.1 m. Combining liquid immersion microscopy concepts with exquisite force control exerted on nanoscale water menisci, concentration of electromagnetic fields in nanometer-size regions was achieved.
View Article and Find Full Text PDFTwisted bilayer graphene is created by slightly rotating the two crystal networks in bilayer graphene with respect to each other. For small twist angles, the material undergoes a self-organized lattice reconstruction, leading to the formation of a periodically repeated domain. The resulting superlattice modulates the vibrational and electronic structures within the material, leading to changes in the behaviour of electron-phonon coupling and to the observation of strong correlations and superconductivity.
View Article and Find Full Text PDF