Publications by authors named "Elie Maza"

Gene expression profiling is of key importance in all domains of life sciences, as medicine, environment, and plants, for both basic and applied research. Despite the emergence of microarrays and high-throughput sequencing, qPCR remains a standard method for gene expression analyses, with its data normalization step being crucial for ensuring accuracy. Currently, the most widely used normalization method is based on the use of reference genes, assumed to be stably expressed across all experimental conditions.

View Article and Find Full Text PDF

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous cultivars by combining high-fidelity long-read sequencing and high-throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar. The deletions/insertions, inversions, translocations, and duplications provide insight into the evolutionary history and parental relationship among grape varieties.

View Article and Find Full Text PDF
Article Synopsis
  • Endoreduplication, a process where plant cells replicate their DNA without dividing, is crucial for plant growth and is especially important in the development of cells in fruits like tomatoes.
  • This study used tomato pericarp tissue to investigate how gene expression changes with increased DNA content, revealing that ploidy levels affect which genes are active during fruit growth.
  • The research identified distinct expression patterns for genes based on development and ploidy level, and mapped the distribution of these levels in the pericarp, confirming that endoreduplication varies by cell layer as the fruit develops.
View Article and Find Full Text PDF

In the present work, the effects of enriching tomatoes with selenium were studied in terms of physiological, metabolic, and molecular processes in the last stages of fruit development, particularly during ripening. A selenium concentration of 10 mg L with sodium selenate and selenium nanoparticles was used in the spray treatments on the whole plants. No significant effects of selenium enrichment were detected in terms of ethylene production or color changes in the ripening fruit.

View Article and Find Full Text PDF

Ripening is the last stage of the developmental program in fleshy fruits. During this phase, fruits become edible and acquire their unique sensory qualities and post-harvest potential. Although our knowledge of the mechanisms that regulate fruit ripening has improved considerably over the past decades, the processes that trigger the transition to ripening remain poorly deciphered.

View Article and Find Full Text PDF

Understanding the mechanisms underlying differentiation of inflorescence and flower meristems is essential towards enlarging our knowledge of reproductive organ formation and to open new prospects for improving yield traits. Here, we show that SlDOF9 is a new modulator of floral differentiation in tomato. CRISPR/Cas9 knockout strategy uncovered the role of SlDOF9 in controlling inflorescence meristem and floral meristem differentiation via the regulation of cell division genes and inflorescence architecture regulator LIN.

View Article and Find Full Text PDF

All-flesh tomato cultivars are devoid of locular gel and exhibit enhanced firmness and improved postharvest storage. Here, we show that SlMBP3 is a master regulator of locular tissue in tomato fruit and that a deletion at the gene locus underpins the All-flesh trait. Intriguingly, All-flesh varieties lack the deleterious phenotypes reported previously for SlMBP3 under-expressing lines and which preclude any potential commercial use.

View Article and Find Full Text PDF

Ethylene modulates plant developmental processes including flower development. Previous studies have suggested ethylene participates in pollen tube (PT) elongation, and both ethylene production and perception seem critical at the time of fertilization. The full gene set regulated by ethylene during PT growth is unknown.

View Article and Find Full Text PDF

Fruit formation comprises a series of developmental transitions among which the fruit set process is essential in determining crop yield. Yet, our understanding of the epigenetic landscape remodelling associated with the flower-to-fruit transition remains poor. We investigated the epigenetic and transcriptomic reprogramming underlying pollination-dependent and auxin-induced flower-to-fruit transitions in the tomato (Solanum lycopersicum) using combined genomewide transcriptomic profiling, global ChIP-sequencing and whole genomic DNA bisulfite sequencing (WGBS).

View Article and Find Full Text PDF

RNA-Seq is a widely used technology that allows an efficient genome-wide quantification of gene expressions for, for example, differential expression (DE) analysis. After a brief review of the main issues, methods and tools related to the DE analysis of RNA-Seq data, this article focuses on the impact of both the replicate number and library size in such analyses. While the main drawback of previous relevant studies is the lack of generality, we conducted both an analysis of a two-condition experiment (with eight biological replicates per condition) to compare the results with previous benchmark studies, and a meta-analysis of 17 experiments with up to 18 biological conditions, eight biological replicates and 100 million (M) reads per sample.

View Article and Find Full Text PDF

As part of normal development most eukaryotic organisms, ranging from insects and mammals to plants, display variations in nuclear ploidy levels resulting from somatic endopolyploidy. Endoreduplication is the major source of endopolyploidy in higher plants. Endoreduplication is a remarkable characteristic of the fleshy pericarp tissue of developing tomato fruits, where it establishes a highly integrated cellular system that acts as a morphogenetic factor supporting cell growth.

View Article and Find Full Text PDF

MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade gathers AGAMOUS-like genes which are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3, both displaying high expression levels in seeds and in central tissues of young fruits.

View Article and Find Full Text PDF

The TomExpress platform was developed to provide the tomato research community with a browser and integrated web tools for public RNA-Seq data visualization and data mining. To avoid major biases that can result from the use of different mapping and statistical processing methods, RNA-Seq raw sequence data available in public databases were mapped de novo on a unique tomato reference genome sequence and post-processed using the same pipeline with accurate parameters. Following the calculation of the number of counts per gene in each RNA-Seq sample, a communal global normalization method was applied to all expression values.

View Article and Find Full Text PDF

In the past 5 years, RNA-Seq has become a powerful tool in transcriptome analysis even though computational methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. It is, however, now commonly accepted that the choice of a normalization procedure is an important step in such a process, for example in differential gene expression analysis. The present article highlights the similarities between three normalization methods: TMM from edgeR R package, RLE from DESeq2 R package, and MRN.

View Article and Find Full Text PDF

In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids.

View Article and Find Full Text PDF

Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening.

View Article and Find Full Text PDF

In light of ongoing climate changes in wine-growing regions, the selection of drought-tolerant rootstocks is becoming a crucial factor for developing a sustainable viticulture. In this study, M4, a new rootstock genotype that shows tolerance to drought, was compared from a genomic and transcriptomic point of view with the less drought-tolerant genotype 101.14.

View Article and Find Full Text PDF

Members of the TOPLESS gene family emerged recently as key players in gene repression in several mechanisms, especially in auxin perception. The TOPLESS genes constitute, in 'higher-plant' genomes, a small multigenic family comprising four to 11 members. In this study, this family was investigated in tomato, a model plant for Solanaceae species and fleshy fruits.

View Article and Find Full Text PDF

In recent years, RNA-Seq technologies became a powerful tool for transcriptome studies. However, computational methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. In particular, it is known that the choice of a normalization procedure leads to a great variability in results of differential gene expression analysis.

View Article and Find Full Text PDF

The article investigates the large sample properties of the quantile normalization method by Bolstad et al. (2003) [4] which has become one of the most popular methods to align density curves in microarray data analysis. We prove consistency of this method which is viewed as a particular case of the structural expectation procedure for curve alignment, which corresponds to a notion of barycenter of measures in the Wasserstein space.

View Article and Find Full Text PDF

A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways.

View Article and Find Full Text PDF