Sea-level rise (SLR) is expected to cause major changes to coastal wetlands, which are among the world's most vulnerable ecosystems and are critical for nonbreeding waterbirds. Because strategies for adaptation to SLR, such as nature-based solutions and designation of protected areas, can locally reduce the negative effects of coastal flooding under SLR on coastal wetlands, it is crucial to prioritize adaptation efforts, especially for wetlands of international importance for biodiversity. We assessed the exposure of coastal wetlands important for nonbreeding waterbirds to projected SLR along the Mediterranean coasts of 8 countries by modeling future coastal flooding under 7 scenarios of SLR by 2100 (from 44- to 161-cm rise) with a static inundation approach.
View Article and Find Full Text PDFThe relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under "space-for-time substitution", the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space-for-time substitution are the time period for species' responses and also the relative contributions of rapid- versus slow reactions in shaping spatial and temporal responses to climate change.
View Article and Find Full Text PDFProtected area networks help species respond to climate warming. However, the contribution of a site's environmental and conservation-relevant characteristics to these responses is not well understood. We investigated how composition of nonbreeding waterbird communities (97 species) in the European Union Natura 2000 (N2K) network (3018 sites) changed in response to increases in temperature over 25 years in 26 European countries.
View Article and Find Full Text PDFClimate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species.
View Article and Find Full Text PDFAlthough the impacts of climate and land-use changes on biodiversity have been widely documented, their joint effects remain poorly understood. We evaluated how nonbreeding waterbird communities adjust to climate warming along a gradient of land-use change. Using midwinter waterbird counts (132 species) at 164 major nonbreeding sites in 22 Mediterranean countries, we assessed the changes in species composition from 1991 to 2010, relative to thermal niche position and breadth, in response to regional and local winter temperature anomalies and conversion of natural habitats.
View Article and Find Full Text PDF