Publications by authors named "Elie Adam"

Real-time estimation of patient cardiovascular states, including cardiac output and systemic vascular resistance, is necessary for personalized hemodynamic monitoring and management. Highly invasive measurements enable reliable estimation of these states but increase patient risk. Prior methods using minimally invasive measurements reduce patient risk but have produced unreliable estimates limited due to trade-offs in accuracy and time resolution.

View Article and Find Full Text PDF

Ketamine is an N-methyl-D-aspartate (NMDA)-receptor antagonist that produces sedation, analgesia, and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.

View Article and Find Full Text PDF
Article Synopsis
  • * It produces gamma oscillations in the brain's electrical activity (EEG), which can be disrupted by slow-delta oscillations at high doses; however, the link between subcellular actions and these network-level oscillations is still unclear.
  • * By developing a biophysical model, researchers have demonstrated how ketamine's impact on NMDA receptors can influence brain oscillations, revealing new mechanisms for its anesthetic effects and potential use in treating depression.
View Article and Find Full Text PDF

Unconsciousness maintained by GABAergic anesthetics, such as propofol and sevoflurane, is characterized by slow-delta oscillations (0.3 to 4 Hz) and alpha oscillations (8 to 14 Hz) that are readily visible in the electroencephalogram. At higher doses, these slow-delta-alpha (SDA) oscillations transition into burst suppression.

View Article and Find Full Text PDF

Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions.

View Article and Find Full Text PDF

We developed an approach to decompose neuronal signals into disjoint components, corresponding to task- or event-based epochs. This protocol describes how to project behavioral templates onto a low-dimensional subspace of neuronal responses to derive neuronal templates, then how to decompose and cluster neuronal responses using these derived templates. We outline these steps on complementary datasets of calcium imaging and spiking activity.

View Article and Find Full Text PDF

Goal-directed locomotion requires control signals that propagate from higher order areas to regulate spinal mechanisms. The corticosubthalamic hyperdirect pathway offers a short route for cortical information to reach locomotor centers in the brainstem. We developed a task in which head-fixed mice run to a visual landmark and then stop and wait to collect the reward and examined the role of secondary motor cortex (M2) projections to the subthalamic nucleus (STN) in controlling locomotion.

View Article and Find Full Text PDF

Flexibly selecting appropriate actions in response to complex, ever-changing environments requires both cortical and subcortical regions, which are typically described as participating in a strict hierarchy. In this traditional view, highly specialized subcortical circuits allow for efficient responses to salient stimuli, at the cost of adaptability and context specificity, which are attributed to the neocortex. Their interactions are often described as the cortex providing top-down command signals for subcortical structures to implement; however, as available technologies develop, studies increasingly demonstrate that behavior is represented by brainwide activity and that even subcortical structures contain early signals of choice, suggesting that behavioral functions emerge as a result of different regions interacting as truly collaborative networks.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in alleviating movement disability in patients with Parkinson’s disease (PD). However, its therapeutic mechanism of action is unknown. The healthy striatum exhibits rich dynamics resulting from an interaction of beta, gamma, and theta oscillations.

View Article and Find Full Text PDF

Sensorimotor behaviors require processing of behaviorally relevant sensory cues and the ability to select appropriate responses from a vast behavioral repertoire. Modulation by the prefrontal cortex (PFC) is thought to be key for both processes, but the precise role of specific circuits remains unclear. We examined the sensorimotor function of anatomically distinct outputs from a subdivision of the mouse PFC, the anterior cingulate cortex (ACC).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session995l8o1401kapm9lmell2vgqck2i8jrf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once