Publications by authors named "Elibio Rech"

Producing double-stranded RNA (dsRNA) represents a bottleneck for the adoption of RNA interference technology in agriculture, and the main hurdles are related to increases in dsRNA yield, production efficiency, and purity. Therefore, this study aimed to optimize dsRNA production in E. coli HT115 (DE3) using an in vivo system.

View Article and Find Full Text PDF

Serine integrases (Ints) are a family of site-specific recombinases (SSRs) encoded by some bacteriophages to integrate their genetic material into the genome of a host. Their ability to rearrange DNA sequences in different ways including inversion, excision, or insertion with no help from endogenous molecular machinery, confers important biotechnological value as genetic editing tools with high host plasticity. Despite advances in their use in prokaryotic cells, only a few Ints are currently used as gene editors in eukaryotes, partly due to the functional loss and cytotoxicity presented by some candidates in more complex organisms.

View Article and Find Full Text PDF
Article Synopsis
  • Toehold switches are biosensors designed to detect specific RNAs, including those from viruses, with a programmable design process that allows for efficient engineering.* -
  • They often face issues with leaky translation in their OFF state, which reduces their sensitivity and effectiveness as biosensors.* -
  • A newly constructed serine integrase circuit significantly improves performance by minimizing leakage, increasing expression fold change, and lowering detection limits, making it easier to use in various biosensor applications.*
View Article and Find Full Text PDF

Soybean is a rich source of vegetal protein for both animal and human consumption. Despite the high levels of protein in soybean seeds, industrial processing to obtain soybean bran significantly decreases the final protein content of the byproducts. To overcome this problem, cultivars with higher protein contents must be developed.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike.

View Article and Find Full Text PDF

Spider silks are well known for their extraordinary mechanical properties. This characteristic is a result of the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Advances in synthetic biology have enabled the design and production of spidroins with the aim of biomimicking the structure-property-function relationships of spider silks.

View Article and Find Full Text PDF

Soybean is a key crop in many countries, being used from human food to the animal industry due to its nutritional properties. Financially, the grain chain moves large sums of money into the economy of producing countries. However, like other agricultural commodities around the world, it can have its final yield seriously compromised by abiotic environmental stressors, like drought.

View Article and Find Full Text PDF

In order to better understand the relationship between Flagelliform (Flag) spider silk molecular structural organization and the mechanisms of fiber assembly, it was designed and produced the Flag spidroin analogue rNcFlag2222. The recombinant proteins are composed by the elastic repetitive glycine-rich motifs (GPGGX/GGX) and the spacer region, rich in hydrophilic charged amino acids, present at the native silk spidroin. Using different approaches for nanomolecular protein analysis, the structural data of rNcFlag2222 recombinant proteins were compared in its fibrillar and in its fully solvated states.

View Article and Find Full Text PDF

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system.

View Article and Find Full Text PDF

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is a biopolymer formed by UDP-glucuronic acid and UDP-N-acetyl-glucosamine disaccharide units linked by β-1,4 and β-1,3 glycosidic bonds. It is widely employed in medical and cosmetic procedures. HA is synthesized by hyaluronan synthase (HAS), which catalyzes the precursors' ligation in the cytosol, elongates the polymer chain, and exports it to the extracellular space.

View Article and Find Full Text PDF

We present a graphene-based biosensor selective to recombinant cyanovirin-N (rCV-N), an antiviral protein that has proven to be an effective microbicide to inhibit HIV replication. We modified the graphene monolayer devices with 1-pyrenebutanoic acid succinimidyl ester, which interacts with both graphene and the primary and secondary amines of antibodies. By monitoring the change in the electrical resistance of the device, we were able to detect rCV-N in solutions in the range of 0.

View Article and Find Full Text PDF

Computer-aided design (CAD) for synthetic biology promises to accelerate the rational and robust engineering of biological systems. It requires both detailed and quantitative mathematical and experimental models of the processes to (re)design biology, and software and tools for genetic engineering and DNA assembly. Ultimately, the increased precision in the design phase will have a dramatic impact on the production of designer cells and organisms with bespoke functions and increased modularity.

View Article and Find Full Text PDF

Recently, new serine integrases have been identified, increasing the possibility of scaling up genomic modulation tools. Here, we describe the use of unidirectional genetic switches to evaluate the functionality of six serine integrases in different eukaryotic systems: the HEK 293T cell lineage, bovine fibroblasts and plant protoplasts. Moreover, integrase activity was also tested in human cell types of therapeutic interest: peripheral blood mononuclear cells (PBMCs), neural stem cells (NSCs) and undifferentiated embryonic stem (ES) cells.

View Article and Find Full Text PDF

Early humans have domesticated plant and animal species based on ancient empirical concepts (Darwin 1868, 1876). In 1886, Mendel established a new paradigm of hereditary laws (Mendel 1866, 1870, 1950) based on genotypic and phenotypic traits of cross-compatible species, establishing a complex breeding technology that is currently utilized for the development of most food and livestock-derived products. Recently, studies on deciphering the double-helical structure (Watson and Crick 1953a, b) and how to restrict DNA (Arber 2012) have established the foundation of recombinant DNA technology.

View Article and Find Full Text PDF

Protein microbicides against HIV can help to prevent infection but they are required in large, repetitive doses. This makes current fermenter-based production systems prohibitively expensive. Plants are advantageous as production platforms because they offer a safe, economical and scalable alternative, and cereals such as rice are particularly attractive because they could allow pharmaceutical proteins to be produced economically and on a large scale in developing countries.

View Article and Find Full Text PDF

There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost.

View Article and Find Full Text PDF

Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids.

View Article and Find Full Text PDF

Spider silk fibres share unprecedented structural and mechanical properties which span from the macroscale to nanoscale and beyond. This is possible due to the molecular features of modular proteins termed spidroins. Thus, the investigation of the organizational scaffolds observed for spidroins in spider silk fibres is of paramount importance for reverse bioengineering.

View Article and Find Full Text PDF

Plants have emerged as an attractive alternative to the traditional mammalian cell cultures or microbial cell-based systems system for the production of valuable recombinant proteins. Through recombinant DNA technology, plants can be engineered to produce large quantities of pharmaceuticals and industrial proteins of high quality at low costs. The recombinant production, by transgenic plants, of therapeutic proteins normally present in human plasma, such as cytokines, coagulation factors, anticoagulants, and immunoglobulins, represents a response to the ongoing challenges in meeting the demand for therapeutic proteins to treat serious inherited or acquired bleeding and immunological diseases.

View Article and Find Full Text PDF

Living organisms are masters at designing outstanding self-assembled nanostructures through a hierarchical organization of modular proteins. Protein-based biopolymers improved and selected by the driving forces of molecular evolution are among the most impressive archetypes of nanomaterials. One of these biomacromolecules is the myriad of compound fibroins of spider silks, which combine surprisingly high tensile strength with great elasticity.

View Article and Find Full Text PDF

Molecular Pharming, the production of recombinant pharmaceuticals through plant biotechnology, has the potential to transform the biologics sector of the pharmaceutical industry. More fascinating however, is how it might be used to improve access to modern medicines, and improve health of the poor in developing countries and emerging economies. Although improving global health through molecular pharming has been discussed for at least two decades, little progress has actually been made.

View Article and Find Full Text PDF

Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications.

View Article and Find Full Text PDF

Seeds are organs specialised in accumulating proteins, and they may provide a potential economically viable platform for the large-scale production and storage of many molecules for pharmaceutical and other productive sectors. Soybean [Glycine max (L.) Merrill] has a high seed protein content and represents an excellent source of abundant and cheap biomass.

View Article and Find Full Text PDF

Background: Recombinant DNA technology has been extensively employed to generate a variety of products from genetically modified organisms (GMOs) over the last decade, and the development of technologies capable of analyzing these products is crucial to understanding gene expression patterns. Liquid chromatography coupled with mass spectrometry is a powerful tool for analyzing protein contents and possible expression modifications in GMOs. Specifically, the NanoUPLC-MSE technique provides rapid protein analyses of complex mixtures with supported steps for high sample throughput, identification and quantization using low sample quantities with outstanding repeatability.

View Article and Find Full Text PDF