Context: In most cases of non-islet cell tumor hypoglycemia (NICTH), high molecular weight forms of insulin-like growth factor II, commonly referred to as big IGF-II, cause hypoglycemia. MicroRNA-483 (miR-483), encoded within an intron of IGF2 gene, has been suggested to be co-expressed with IGF-II.
Objective: The aim of this study is to demonstrate the utility and reliability of circulating miR-483 as a biomarker for diagnosis and therapeutic outcome of NICTH.
Apolipoprotein A-I (ApoA-I), the primary component of high-density lipoprotein (HDL) cholesterol primes β-cells to increase insulin secretion, however, the mechanisms involved are not fully defined. Here, we aimed to confirm ApoA-I receptors in β-cells and delineate ApoA-I-receptor pathways in β-cell insulin output. An LRC-TriCEPS experiment was performed using the INS-1E rat β-cell model and ApoA-I for unbiased identification of ApoA-I receptors.
View Article and Find Full Text PDFIntra-islet crosstalk has become a focus area to fully understand the regulation of insulin secretion and impaired β-cell function in type 2 diabetes (T2D). Here, we put forward evidence for insulin-like growth factor binding protein 7 (IGFBP7) as a potential protein involved in autocrine and paracrine β-cell regulation. We showed presence of IGFBP7 in granules of both human α- and β-cells and measured elevated gene expression as well as IGFBP7 protein in T2D.
View Article and Find Full Text PDFCF-related diabetes (CFRD) is a prevalent comorbidity in people with Cystic Fibrosis (CF), significantly impacting morbidity and mortality rates. This review article critically evaluates the current understanding of CFRD molecular mechanisms, including the role of CFTR protein, oxidative stress, unfolded protein response (UPR) and intracellular communication. CFRD manifests from a complex interplay between exocrine pancreatic damage and intrinsic endocrine dysfunction, further complicated by the deleterious effects of misfolded CFTR protein on insulin secretion and action.
View Article and Find Full Text PDFAim: MicroRNAs (miRNAs) regulate β-cell function, and β-cell mitochondria and insulin secretion are perturbed in diabetes. We aimed to identify key miRNAs regulating β-cell mitochondrial metabolism and novel β-cell miRNA-mitochondrial pathways.
Methods: TargetScan (http://www.
Cocaine and amphetamine-regulated transcript (CART) is expressed in pancreatic islet cells and neuronal elements. We have previously established insulinotropic actions of CART in human and rodent islets. The receptor for CART in the pancreatic beta cells is unidentified.
View Article and Find Full Text PDFAims/hypothesis: Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo.
Methods: Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq.
Sphingosine-1-phosphate (S1P) is a phosphosphingolipid with pleiotropic biological functions. S1P acts as an intracellular second messenger, as well as extracellular ligand to five G-protein coupled receptors (S1PR1-5). In the brain, S1P regulates neuronal proliferation, apoptosis, synaptic activity and neuroglia activation.
View Article and Find Full Text PDFUnlabelled: Whole-body glucose homeostasis is coordinated through secretion of glucagon and insulin from pancreatic islets. When glucose is low, glucagon is released from α-cells to stimulate hepatic glucose production. However, the mechanisms that regulate glucagon secretion from pancreatic α-cells remain unclear.
View Article and Find Full Text PDFGlucocorticoid use is associated with steroid-induced diabetes mellitus and impaired pancreatic β-cell insulin secretion. Here, the glucocorticoid-mediated transcriptomic changes in human pancreatic islets and the human insulin-secreting EndoC-βH1 cells were investigated to uncover genes involved in β-cell steroid stress-response processes. Bioinformatics analysis revealed glucocorticoids to exert their effects mainly on enhancer genomic regions in collaboration with auxiliary transcription factor families including AP-1, ETS/TEAD, and FOX.
View Article and Find Full Text PDFType 2 diabetes (T2D) develops due to insulin resistance and an inability of the pancreatic β-cells to increase secretion of insulin and reduce elevated blood glucose levels. Diminished β-cell function and mass have been implicated in impaired β-cell secretory capacity and several microRNAs (miRNAs) have been reported to be involved in regulating β-cell processes. We believe miRNAs are nodes in important miRNA-mRNA networks regulating β-cell function and that miRNAs therefore can be targets for the treatment of T2D.
View Article and Find Full Text PDFType 2 diabetes (T2D) is associated with low-grade inflammation. Here we investigate if the anti-inflammatory cytokine interleukin-4 (IL-4) affects glucose-stimulated insulin secretion (GSIS) in human islets from non-diabetic (ND) and type-2 diabetic (T2D) donors. We first confirmed that GSIS is reduced in islets from T2D donors.
View Article and Find Full Text PDFDifferential expression of microRNAs (miRNAs) is observed in many diseases including type 2 diabetes (T2D). Insulin secretion from pancreatic beta cells is central for the regulation of blood glucose levels and failure to release enough insulin results in hyperglycemia and T2D. The importance in T2D pathogenesis of single miRNAs in beta cells has been described; however, to get the full picture, high-throughput miRNA sequencing is necessary.
View Article and Find Full Text PDFType 2 diabetes (T2D) is a polygenic disease and studies to understand the etiology of the disease have required selectively bred animal models with polygenic background. In this review, we present two models; the Goto-Kakizaki (GK) rat and the Oikawa-Nagao Diabetes-Prone (ON-DP) and Diabetes-Resistant (ON-DR) mouse. The GK rat was developed by continuous selective breeding for glucose tolerance from the outbred Wistar rat around 50 years ago.
View Article and Find Full Text PDFVoltage-gated Ca (Ca) channel dysfunction leads to impaired glucose-stimulated insulin secretion in pancreatic β-cells and contributes to the development of type-2 diabetes (T2D). The role of the low-voltage gated T-type Ca channels in β-cells remains obscure. Here we have measured the global expression of T-type Ca3.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) enable cells to sense environmental cues and are indispensable for coordinating vital processes including quorum sensing, proliferation, and sexual reproduction. GPCRs comprise the largest class of cell surface receptors in eukaryotes, and for more than three decades the pheromone-induced mating pathway in baker's yeast Saccharomyces cerevisiae has served as a model for studying heterologous GPCRs (hGPCRs). Here we report transcriptome profiles following mating pathway activation in native and hGPCR-signaling yeast and use a model-guided approach to correlate gene expression to morphological changes.
View Article and Find Full Text PDFOut-of-field patient doses in proton therapy are dominated by neutrons. Currently, they are not taken into account by treatment planning systems. There is an increasing need to include out-of-field doses in the dose calculation, especially when treating children, pregnant patients, and patients with implants.
View Article and Find Full Text PDFMeasurements in the stray radiation field from a proton therapy pencil beam at energies 70 and 146 MeV were performed using microdosimetric tissue-equivalent proportional counters (TEPCs). The detector volumes were filled with a propane-based tissue-equivalent gas at low pressure simulating a mean chord length of 2 μm in tissue. Investigations were performed with and without a beam range shifter, and with different air gaps between the range shifter and a solid water phantom.
View Article and Find Full Text PDFAims: Synthetic glucocorticoids, including dexamethasone (DEX), are clinically prescribed due to their immunoregulatory properties. In excess they can perturb glucose homeostasis, with individuals predisposed to glucose intolerance more sensitive to these negative effects. While DEX is known to negatively impact β-cell function, it is unclear how.
View Article and Find Full Text PDF