Publications by authors named "Elias Perez"

Candida albicans, a common fungal organism, often lives harmlessly in the human body. However, under certain conditions, it can turn into a dangerous pathogen, causing infections that range from mild to life-threatening. With rising resistance to antifungal treatments, understanding and controlling this opportunistic fungus has never been more crucial.

View Article and Find Full Text PDF

Hypothesis: The petal effect is a well-known natural phenomenon in surface science and has served as inspiration for the creation of several materials with superhydrophobic qualities and high adhesion. As surface roughness has a crucial role in these properties, being able to modulate it could help us design materials at will. Capillary penetration frustrates diffusion and promotes large contact angles as well as high adhesion.

View Article and Find Full Text PDF

We explored the potential of different nanoparticles (TiO, CaCO, and AlO), considering their pure form and modified with cinnamon essential oil (CEO). These materials were characterized using various techniques, including FTIR spectroscopy, XRD analysis, TGA, and SEM. The interaction between CEO and nanoparticles changed depending on the nanoparticle type.

View Article and Find Full Text PDF

Liquid and surface polarities play an important role in wetting phenomena, and this should still be true if the surface is rough. We analyze the wetting of high-polar and low-polar liquids on rough low-polar surfaces made of polystyrene. The experimental results are analyzed by the surface tension components (STC) and the equation-of-state (EQS) approaches.

View Article and Find Full Text PDF

Objective: Systematically review the literature regarding media communication about antibiotics and anti-microbial resistance (AMR) to synthesise its key characteristics and impact effectiveness, identifying gaps and areas for further research.

Methods: A comprehensive systematic review covering five international databases for articles published between 1 September 2008 and 1 September 2018 was performed using the registered protocol (PROSPERO: CRD42018116464). The search using terms related to media communication and antibiotics or AMR yielded 19 eligible studies, which were analysed and qualitatively synthesised.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles (MSNPs) were synthesized and loaded with metformin hydrochloride (Metf), its adsorption has studied at different concentrations and pHs, optimal adsorption conditions were determined. Hybrid MSNPs-Metf were mixed with chitosan to compress them and form quasi-spherical pellets, were coated with five chitosan layers as a barrier to prolong metformin release. It showed that this pellet is useful for metformin controlled release since drug over time was significantly delayed by the chitosan coating and then, as metformin is electrostatically linked to MSNPs, it also controls the release of drug, releasing 170 mg after 17 h of exposure at pH 1.

View Article and Find Full Text PDF

A natural and biocompatible extract of garlic as a support, decorated with silver nanoparticles, is a proposal to generate an effective antifungal agent against dermatophytes at low concentrations. Silver nanoparticles (AgNPs) with a diameter of 26±7 nm were synthesized and their antimycotic activity was examined against Trichophyton rubrum (T. rubrum), inhibiting 94 % of growth at a concentration of 0.

View Article and Find Full Text PDF

Graphene oxide-gold nanoparticle (AuNPs@GO) hybrids were fabricated in water dispersions of graphene oxide (GO) and Au precursor completely free of stabilizing agents by UV-light irradiation. Gold nanoparticle (AuNP) nucleation, growth, and stabilization mechanisms at the surface of GO are discussed on the basis of UV-Vis, Raman, IR, and X-Ray photo-spectroscopy studies. The analyses of AuNPs@GO hybrids by transmission electron microscopy (TEM), thermogravimetric (TGA) and electrochemical tests show that they exhibit outstanding chemical, thermal and electrochemical stabilities.

View Article and Find Full Text PDF

The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration.

View Article and Find Full Text PDF

Electrostatic interactions, mediated by ionic-exchange, between polyethylenimine (PEI) and glucose oxidase (GOx) were used to form GOx-PEI macro-complex, which were evaluated for pH and thermal stability of GOx. Under the experimental conditions, the complex had a dominant GOx presence on its surface and a hydrodynamic diameter of 205 ± 16 nm. Activity was evaluated from 40 to 75 °C, and at pH from 2 to 12.

View Article and Find Full Text PDF

Luminescence concentration quenching in Gd2O3:Eu(3+) nanocrystals results from strong interactions among O(2-) ions and Eu(3+) ions. Because all synthesized Gd2O3:Eu(3+) nanocrystals present the same cubic crystalline phase regardless of Eu(3+) concentration, it is possible to study the optical properties as a function of the dopant concentration. The emission intensities and lifetime curves for Gd2O3:Eu(3+) were analyzed by a simple rate equation model to study the interaction between the O(2-) ions and Eu(3+) ions.

View Article and Find Full Text PDF

Objective: This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS).

Material And Methods: An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS.

View Article and Find Full Text PDF

A new strategy to improve silicon-based endodontic treatment tightness by dentine hydrophobization is presented in this work: root dentine was silanized to obtain a hydrophobic dentine-sealer interface that limits fluid penetration. This strategy was based on the grafting of aliphatic carbon chains on the dentine through a silanization with the silane end groups [octadecyltrichlorosilane (OTS) and octadecyltriethoxysilane]. Dentine surface was previously pretreated, applying ethylenediaminetetraacetic acid and sodium hypochlorite, to expose hydroxyl groups of collagen for the silane grafting.

View Article and Find Full Text PDF

Poly(2-dimethylamino-ethylmethacrylate) (PDMAEMA), a cationic polymer, has been widely reported as a nonviral carrier. Despite the fact that the cytotoxicity of this polymer has been extensively studied, there is a lack of information about its blood compatibility. Hence, this work evaluates the hemocompatibility of free-form PDMAEMA homopolymers differing in molecular weight (Mw) with or without a poly(ethylene glycol) (PEG) sequence in the form of a palm tree-like structure.

View Article and Find Full Text PDF

The prevention of nonspecific protein adsorption is a crucial prerequisite for many biomedical and biotechnological applications. Therefore, the design of robust and versatile methods conferring optimal protein-resistance properties to surfaces has become a challenging issue. Here we report the unexpected case of polycation-ending polyelectrolyte multilayers (PEM) that efficiently prevented the adsorption of a negatively charged model protein, glucose oxidase (GOX).

View Article and Find Full Text PDF

Porous silicon (PSi) is a promising biomaterial presenting the advantage of being biocompatible and bioresorbable. Due to the large specific surface area and unique optical features, these microporous structures are excellent candidates for biosensing applications. Investigating device functionality and developing simple Si-based transducers need to be addressed in novel biological detection.

View Article and Find Full Text PDF

We investigate the pattern formation produced by precipitated species during solvent evaporation through the numerical solution of a set of partial differential equations that account for the mechanisms of evaporation, diffusion, and precipitation. A pattern is formed because solvent evaporation provokes precipitation of species near the border of the system producing ringlike depositions from the edge to the center. Solvent evaporation is modeled as occurs with a liquid drop on a surface.

View Article and Find Full Text PDF

Liquid cell atomic force microscopy (LC-AFM) is used to image self-assembled polyelectrolyte films eliminating any drying effects on the film structure. Weak/weak and strong/weak polyelectrolyte films are formed by the alternated deposition of poly(acrylic acid) [PAA]/poly(allylamine hydrochloride) [PAH], and poly(sodium 4-styrene sulfonate) [PSS]/PAH, respectively, forming a granular surface structure. Number and area of grains (GN, GA) are used to characterize the surface of these films during their build up process.

View Article and Find Full Text PDF

Brownian dynamics simulations were performed to study the structure of polyelectrolyte complexes formed by two flexible, oppositely charged polyelectrolyte chains. The distribution of monomers in the complex as well as the radius of gyration and structure factor of complexes and individual polyelectrolytes are reported. These structural properties were calculated for polyelectrolyte chains with equal number of monomers, keeping constant the bond length of the negative chain and increasing the bond length of the positive chain.

View Article and Find Full Text PDF

We develop a coherent-scattering model for the reflection of light from a monolayer of large particles and low surface coverage. The model takes into account multiple scattering between particles of the monolayer and with the substrate, and it can be used around the critical angle in an internal reflection configuration. We compare the results of the model with our own reflectivity data taken with latex particles adsorbed on a glass-water interface and with a simpler effective-medium model.

View Article and Find Full Text PDF

We investigate the use of laser reflectometry near the critical angle to monitor particle adsorption onto a flat glass surface. Experimental results show that positive particles are adsorbed onto the glass surface and that their adsorption kinetics depend strongly on the volume fraction occupied by the particles in suspension but not appreciably on the particle size. The reflectance near the critical angle is dominated by the particles on the surface, with the contribution of the particles in suspension being very low.

View Article and Find Full Text PDF

The translational and rotational motions of optically anisotropic spherical particles embedded in cross-linked polyacrylamide gels is studied by dynamic light scattering. The particles are liquid crystal droplets solidified in the nematic phase. The amount of cross linkers is varied to cross the sol-gel transition where the system becomes nonergodic for both translational and rotational diffusion modes of the probes.

View Article and Find Full Text PDF

The spreading dynamics of small polydimethylsiloxane (PDMS) drops was studied on substrates with varying surface energies. For experimental parameters near the wetting transition, we observed small PDMS drops of different drop volumes as a function of time using interference video microscopy. While for large drops the contact angle θ decreases with the well-established power-law relation θ approximately t(-0.

View Article and Find Full Text PDF