Introduction: Discriminating bipolar disorder (BD) from major depressive disorder (MDD) remains a challenging clinical task. Identifying specific peripheral biosignatures that can differentiate between BD and MDD would significantly increase diagnostic accuracy. Dysregulated neuroplasticity is implicated in BD and MDD, and psychotropic medications restore specific disrupted processes by increasing neurotrophic signalling.
View Article and Find Full Text PDFBackground: Dopamine is reduced in the brain of rats treated with fipronil, a broad-spectrum insecticide. VGF (no acronym) is a neurotrophin-inducible protein expressed as the 75 kDa form (precursor or pro-VGF) or its truncated peptides. VGF immunostaining has been revealed using an antibody against the C-terminal nonapeptide of the rat pro-VGF in the nerve terminals of the rat substantia nigra, where it was reduced after 6-hydroxydopamine treatment.
View Article and Find Full Text PDFParkinson's disease (PD) is an incurable neurodegenerative disease that is rarely diagnosed at an early stage. Although the understanding of PD-related mechanisms has greatly improved over the last decade, the diagnosis of PD is still based on neurological examination through the identification of motor symptoms, including bradykinesia, rigidity, postural instability, and resting tremor. The early phase of PD is characterized by subtle symptoms with a misdiagnosis rate of approximately 16-20%.
View Article and Find Full Text PDFIntroduction: The pathogenesis of neuropsychiatric systemic lupus erythematosus (NPSLE) is widely unknown, and the role of autoantibodies is still undetermined.
Methods: To identify brain-reactive autoantibodies possibly related to NPSLE, immunofluorescence (IF) and transmission electron microscopy (TEM) on rat and human brains were performed. ELISA was used to reveal the presence of known circulating autoantibodies, while western blot (WB) was applied to characterize potential unknown autoantigen(s).
Systemic lupus erythematosus is a complex immunological disease where both environmental factors and genetic predisposition lead to the dysregulation of important immune mechanisms. Eventually, the combination of these factors leads to the production of self-reactive antibodies that can target any organ or tissue of the human body. Autoantibodies can form immune complexes responsible for both the organ damage and the most severe complications.
View Article and Find Full Text PDFIndividuals with severe psychiatric disorders have a reduced life expectancy compared to the general population. At the biological level, patients with these disorders present features that suggest the involvement of accelerated aging, such as increased circulating inflammatory markers and shorter telomere length (TL). To date, the role of the interplay between inflammation and telomere dynamics in the pathophysiology of severe psychiatric disorders has been scarcely investigated.
View Article and Find Full Text PDFTo assess the role of lithium treatment in the relationship between bipolar disorder (BD) and leukocyte telomere length (LTL). We compared LTL between 131 patients with BD, with or without a history of lithium treatment, and 336 controls. We tested the association between genetically determined LTL and BD in two large genome-wide association datasets.
View Article and Find Full Text PDFIntroduction: Severe psychiatric disorders are typically associated with a significant reduction in life expectancy compared with the general population. Among the different hypotheses formulated to explain this observation, accelerated ageing has been increasingly recognised as the main culprit. At the same time, telomere shortening is becoming widely accepted as a proxy molecular marker of ageing.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra (SN). At disease onset, a diagnosis is often difficult. VGF peptides are abundant in the SN and peripheral circulation; hence, we investigate whether their plasma profile may reflect the brain dopamine reduction.
View Article and Find Full Text PDFOxytocin (5, 20 and 100 ng) injected unilaterally into the bed nucleus of the stria terminalis (BNST) of male rats stereotaxically implanted with a microinjection cannula coupled to a microdialysis probe, induces penile erection and yawning that occur concomitantly with a dose-dependent increase in the extracellular concentration of glutamic acid, dopamine and its main metabolite 3,4-dihydroxyphenilacetic acid (DOPAC), and nitrites (NO) in the dialysate obtained from the BNST by intracerebral microdialysis. The responses induced by oxytocin (100 ng) were all abolished by the oxytocin receptor antagonist d(CH)Tyr(Me)-Orn-vasotocin (1 μg), and reduced by CNQX (1 μg), a competitive antagonist of the AMPA receptors, both given into the BNST 25 min before oxytocin. In contrast, (+) MK-801 (1 μg), a non-competitive antagonist of NMDA receptors, and SCH 23390 (1 μg), a selective dopamine D1 receptor antagonist, reduced penile erection and yawning, but not glutamic acid and dopamine increases in the BNST dialysate induced by oxytocin.
View Article and Find Full Text PDF