Environmental stimuli in early life are recognized to affect brain development and behavior. Mother-pup interaction constitutes a determinant stimulus during this critical period. It is known that the dopaminergic system undergoes significant reorganization during adolescence and that dopamine receptors are involved in recognition memory.
View Article and Find Full Text PDFExposure to early life stress leads to long-term neurochemical and behavioral alterations. Stress-induced psychiatric disorders, such as depression, have recently been linked to dysregulation of glutamate signaling, mainly via its postsynaptic receptors. The role of metabotropic glutamate receptor 5 (mGluR5) in stress-induced psychopathology has been the target of several studies in humans.
View Article and Find Full Text PDFNeonatal handling is an experimental model of early life experience associated with resilience in later life challenges, altering the ability of animals to respond to stress. The endocannabinoid system of the brain modulates the neuroendocrine and behavioral effects of stress, while this system is also capable of being modulated by stress exposure itself. The present study has addressed the question of whether neonatal handling in rats could affect cannabinoid receptors, in an age- and sex-dependent manner, using hybridization and receptor binding techniques.
View Article and Find Full Text PDFNeural stem cells have been considered as a source of stem cells that can be used for cell replacement therapies in neurodegenerative diseases, as they can be isolated and expanded in vitro and can be used for autologous grafting. However, due to low percentages of survival and varying patterns of differentiation, strategies that will enhance the efficacy of transplantation are under scrutiny. In this article, we have examined whether alterations in Geminin's expression, a protein that coordinates the balance between self-renewal and differentiation, can improve the properties of stem cells transplanted in 6-OHDA hemiparkinsonian mouse model.
View Article and Find Full Text PDFDopaminergic deficiency of the weaver mutant mouse is a valuable tool to further our understanding of Parkinson׳s disease (PD) pathogenesis since dopaminergic neurons of the nigrostriatal pathway undergo spontaneous and progressive cell death. In the present study we investigated the changes in protein expression and phosphorylation of glutamate receptor subunits and αCaMKII in weaver striatum at the end of the third and sixth postnatal month. Using immunoblotting, we found increased immunoreactivity levels of both GluN2A and GluN2B subunits of NMDA receptors and GluA1 subunit of AMPA receptors approximately from 75% to 110% in the 3-month-old weaver striatum compared to control.
View Article and Find Full Text PDFThe most prominent pathological feature in Parkinson's disease (PD) is the progressive and selective loss of mesencephalic dopaminergic neurons of the nigrostriatal tract. The present study was conducted in order to investigate whether naive and or genetically modified neural stem/precursor cells (NPCs) can survive, differentiate and functionally integrate in the lesioned striatum. To this end, stereotaxic injections of 6-OHDA in the right ascending nigrostriatal dopaminergic pathway of mice and subsequent NPC transplantations were performed, followed by apomorphine-induced rotations and double-immunofluorescence experiments.
View Article and Find Full Text PDFEctopic expression of tropomyosin-related kinase A (TrkA), the high-affinity receptor of nerve growth factor (NGF), has been widely used in cell culture systems to uncover its role in cell survival or death events. In contrast, little is known about the consequences of its expression in vivo. To address this question, adeno-associated virus (AAV) vectors were used to express TrkA in the substantia nigra (SN) and striatum of adult rats.
View Article and Find Full Text PDFThe N-methyl-D-aspartate receptor (NMDAR) is a key molecule mediating brain plasticity related processes. Knowing that alternative splicing of the NMDAR1 (NR1) subunit offers molecular diversity to NMDAR, controls the forward trafficking of the NR1 protein and is important for placing NMDA receptors at synapses, we investigated herein the postnatal developmental expression and the influence of visual deprivation on NR1 subunit splice variants in rat retina. Real-time PCR was performed using oligonucleotide primers specific for N- terminal (NR1a, NR1b) and C-terminal splice variants (NR1-1, NR1-2, NR1-3, NR1-4).
View Article and Find Full Text PDFPurpose. Experimental manipulation of experience during development can have profound effects on the functioning of the resulting circuits. N-methyl-d-aspartate glutamate receptor (NMDAR) activity is required for the establishment and refinement of neural circuits during development.
View Article and Find Full Text PDFThe Girk2 ( wv ) (weaver) mutation impairs migration of cerebellar granule cells from external to internal granular layer and induces neuronal death during the first 2 weeks of postnatal life. Kainate receptors are heteromeric ionotropic receptors of glutamate consisting of five subunits termed GluR5, GluR6, GluR7, KA1 and KA2. In order to investigate whether the weaver gene affects the expression of kainate receptors in weaver cerebellum, we determined mRNA expression levels of GluR6 kainate receptor subunit and [(3)H]kainic acid specific binding in the developing cerebellum, using in situ hybridization and receptor film autoradiography, respectively.
View Article and Find Full Text PDFSpanish histologist Santiago Ramón y Cajal, one of the most notable figures in Neuroscience, and winner, along with Camillo Golgi, of the 1906 Nobel Prize in Physiology or Medicine for his discoveries on the structure of the nervous system, did not escape experimenting with some of the psychiatric techniques available at the time, mainly hypnotic suggestion, albeit briefly. While a physician in his thirties, Cajal published a short article under the title, "Pains of labour considerably attenuated by hypnotic suggestion" in Gaceta Médica Catalana. That study may be Cajal's only documented case in the field of experimental psychology.
View Article and Find Full Text PDFIn the present study, we conducted: (i) in situ hybridization in order to investigate the expression of kainate and GABA(A) receptor subunits and the pre-proenkephalin and prodynorphin peptides in the brain of weaver mouse (a genetic model of dopamine deficiency) and (ii) immunocytochemistry in order to study the somatostatin-positive cells in weaver striatum. Our results indicated: (i) increases in mRNA levels of KA2 and GluR6 kainate receptor subunits, of alpha(4) and beta(3) GABA(A) receptor subunits and of pre-proenkephalin and prodynorphin in 6-month-old weaver striatum; (ii) a decrease in alpha(1) and beta(2) GABA(A) subunit mRNAs in 6-month-old weaver globus pallidus; (iii) increases in KA2, alpha(4) and beta(3) and decreases in alpha(2) and beta(2) mRNAs in the 6-month-old weaver somatosensory cortex; and (iv) an increase in somatostatin-immunopositive cells in 3-month-old weaver striatum. We suggest that: (i) in striatum, the alterations are induced by the induction of the transcription factor DeltafosB (for GluR6, pre-proenkephalin and prodynorphin mRNAs) and the suppression of transcription factors like NGF-IB (nerve growth factor inducible B; for the KA2 mRNA), in response to dopamine depletion; (ii) in striatum and cortex, the alterations in the expression of the GABA(A) subunits indicate an increase of extrasynaptic versus a decrease of synaptic GABA(A) receptors; and (iii) in globus pallidus, the increased striatopallidal GABAergic transmission leads to a decrease in the number of GABA(A) receptors.
View Article and Find Full Text PDFIn the retina, neurotransmission from photoreceptors to ON-cone and rod bipolar cells is sign reversing and mediated by the metabotropic glutamate receptor mGluR6, which converts the light-evoked hyperpolarization of the photoreceptors into depolarization of ON bipolar cells. The Royal College of Surgeons (RCS) rat retina undergoes progressive photoreceptor loss due to a genetic defect in the pigment epithelium cells. The consequences of photoreceptor loss and the concomitant loss of glutamatergic input to second-order retinal neurons on the expression of the metabotropic glutamate receptor was investigated in the RCS rat retina from early stages of photoreceptor degeneration (P17) up to several months after complete rod and cone degeneration (P120).
View Article and Find Full Text PDFThe present study investigates the production of regular and irregular verbs in the past tense and the comprehension of passive sentences by Greek-speaking PD patients, and compares their behavior to that of normal speakers. Although the two groups manifest large scale differences at all the above constructions, the behavior of PDs is not different at regular vs. irregular past tense formation neither did we obtain strong evidence that they do not comprehend passives, most importantly, they certainly do not perform at chance.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
February 2003
Background: The effect of age and photoreceptor degeneration on the kainate subtype of glutamate receptors and on the benzodiazepine-sensitive gamma-aminobutyric acid-A receptors (GABA(A)) in normal and RCS (Royal College of Surgeons) rats were investigated.
Methods: [(3)H]Kainate and [(3)H]flunitrazepam were used as radioligands for kainate and GABA(A)/benzodiazepine()receptors, respectively, using the quantitative receptor autoradiography technique.
Results: In both normal and RCS rat retina we observed that [(3)Eta]flunitrazepam and [(3)Eta]kainate binding levels were several times higher in inner plexiform layer (IPL) than in outer plexiform layer (OPL) at all four ages studied (P17, P35, P60 and P180).