Purpose: Some species of fish and seafood are high in trimethylamine N-oxide (TMAO), which accumulates in muscle where it protects against pressure and cold. Trimethylamine (TMA), the metabolic precursor to TMAO, is formed in fish during bacterial spoilage. Fish intake is promoted for its potential cardioprotective effects.
View Article and Find Full Text PDFBackground: Standard lipid panel assays employing chemical/enzymatic methods measure total cholesterol (TC), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C), from which are calculated estimates of low-density lipoprotein cholesterol (LDL-C). These lipid measures are used universally to guide management of atherosclerotic cardiovascular disease risk. Apolipoprotein B (apoB) is generally acknowledged to be superior to LDL-C for lipid-lowering therapeutic decision-making, but apoB immunoassays are performed relatively infrequently due to the added analytic cost.
View Article and Find Full Text PDFBackground: Gut microbiota-related metabolites, trimethylamine-N-oxide (TMAO), choline, and betaine, have been shown to be associated with cardiovascular disease (CVD) risk. Moreover, lower plasma betaine concentrations have been reported in subjects with type 2 diabetes mellitus (T2DM). However, few studies have explored the association of betaine with incident T2DM, especially in the general population.
View Article and Find Full Text PDFJ Clin Med
February 2019
Background: Low circulating magnesium (Mg) is associated with an increased risk of developing type 2 diabetes mellitus (T2DM). We aimed to study the performance of a nuclear magnetic resonance (NMR)-based assay that quantifies ionized Mg in EDTA plasma samples and prospectively investigate the association of Mg with the risk of T2DM.
Methods: The analytic performance of an NMR-based assay for measuring plasma Mg was evaluated.
Trimethylamine-N-Oxide (TMAO) is a microbiome-related metabolite that is cleared by the kidney and linked to renal function. We explored the relationship between TMAO and all-cause mortality, and determined whether this association was modified by renal function. A prospective study was performed among PREVEND participants to examine associations of plasma TMAO with all-cause mortality.
View Article and Find Full Text PDFBackground And Objectives: Trimethylamine-N-oxide (TMAO) produced by gut microbiota metabolism of dietary choline and carnitine has been shown to be associated with increased risk of cardiovascular disease (CVD) and to provide incremental clinical prognostic utility beyond traditional risk factors for assessing a patient's CVD risk. The aim of this study was to develop an automated nuclear magnetic resonance (NMR) spectroscopy assay for quantification of TMAO concentration in serum and plasma using a high-throughput NMR clinical analyzer.
Methods: Key steps in assay development included: (i) shifting the TMAO analyte peak to a less crowded region of the spectrum with a pH buffer/reagent, (ii) attenuating the broad protein background signal in the spectrum and (iii) using a non-negative least squares algorithm for peak deconvolution.
Background: Trimethylamine-N-oxide (TMAO), an atherogenic metabolite species, has emerged as a possible new risk factor for cardiovascular disease. Animal studies have shown that circulating TMAO levels are regulated by genetic and environmental factors. However, large-scale human studies have failed to replicate the observed genetic associations, and epigenetic factors such as DNA methylation have never been examined in relation to TMAO levels.
View Article and Find Full Text PDFBackground And Aims: Effects of single ascending doses of MDCO-216 on plasma lipid and lipoprotein levels were assessed in human healthy volunteers and in patients with stable coronary artery disease (CAD).
Methods: MDCO-216 was infused at a single dose of 5, 10, 20, 30 or 40 mg/kg over 2 h and blood was collected at 2, 4, 8, 24, 48, 168 and 720 h after start of infusion (ASOI). Lipoprotein lipids were assessed by FLPC and by 1H NMR.
Background: The choline metabolite, betaine, plays a role in lipid metabolism, and may predict the development of cardiovascular disease and type 2 diabetes mellitus (T2DM). Phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) require phosphatidylcholine as substrate, raising the possibility that there is an intricate relationship of these protein factors with choline metabolism. Here we determined the relationships of PLTP and LCAT activity with betaine in subjects with and without T2DM.
View Article and Find Full Text PDFObjective: To determine effects of single ascending doses of MDCO-216 on high-density lipoprotein (HDL) subfractions in relation to changes in cholesterol efflux capacity in healthy volunteers and in patients with stable angina pectoris.
Approach And Results: Doses of 5- (in volunteers only), 10-, 20-, 30-, and 40-mg/kg MDCO-216 were infused during 2 hours, and plasma and serum were collected during 30 days. Plasma levels of HDL subfractions were assessed by 2-dimensional gel electrophoresis, immunoblotting, and image analysis.
MDCO-216 is a complex of dimeric ApoA-IMilano and palmitoyl oleoyl phosphatidylcholine (POPC), previously shown to reduce atherosclerotic plaque burden. Here we studied the effect of incubation of human plasma or serum with MDCO-216 on cholesterol efflux capacity from J774 cells, on prebeta-1 high density lipoprotein (prebeta-1 HDL) and on HDL size assessed by proton nuclear magnetic resonance ((1)H-NMR). MDCO-216 incubated in buffer containing 4% human serum albumin stimulated both ABCA1-mediated efflux and ABCA1-independent cholesterol efflux from J774 macrophages.
View Article and Find Full Text PDFObjectives: Nuclear magnetic resonance (NMR) spectroscopy has been successfully applied to the measurement of high-density lipoprotein (HDL) particles, providing particle concentrations for total HDL particle number (HDL-P), HDL subclasses (small, medium, large) and weighted, average HDL size for many years. Key clinical studies have demonstrated that NMR-measured HDL-P was more strongly associated with measures of coronary artery disease and a better predictor of incident cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C). Recently, an NMR-based clinical analyzer, the Vantera(®), was developed to allow lipoprotein measurements to be performed in the routine, clinical laboratory setting.
View Article and Find Full Text PDFBackground: The Vantera Clinical Analyzer was developed to enable fully-automated, high-throughput nuclear magnetic resonance (NMR) spectroscopy measurements in a clinical laboratory setting. NMR-measured low-density lipoprotein particle number (LDL-P) has been shown to be more strongly associated with cardiovascular disease outcomes than LDL cholesterol (LDL-C) in individuals for whom these alternate measures of LDL are discordant.
Objective: The aim of this study was to assess the analytical performance of the LDL-P assay on the Vantera Clinical Analyzer as per Clinical Laboratory Standards Institute (CLSI) guidelines.
Laboratory measurements of plasma lipids (principally cholesterol and triglycerides) and lipoprotein lipids (principally low-density lipoprotein [LDL] and low-density lipoprotein [HDL] cholesterol) are the cornerstone of the clinical assessment and management of atherosclerotic cardiovascular disease (CVD) risk. LDL particles, and to a lesser extent very-low-density lipoprotein [VLDL] particles, cause atherosclerosis, whereas HDL particles prevent or reverse this process through reverse cholesterol transport. The overall risk for CVD depends on the balance between the "bad" LDL (and VLDL) and "good" HDL particles.
View Article and Find Full Text PDFBackground: The sex differential in coronary heart disease (CHD) risk, which is not explained by male/female differences in lipid and lipoprotein concentrations, narrows with age. We examined whether this differential CHD risk might, in part, be attributable to the sizes of lipoprotein particles or concentrations of lipoprotein subclasses.
Methods: We analyzed frozen plasma samples from 1574 men and 1692 women from exam cycle 4 (1988-1990) of the Framingham Offspring Study.
In clinical practice, the coronary artery disease (CAD) risk associated with high levels of low-density lipoprotein (LDL) or low levels of high-density lipoprotein (HDL) is assessed not by measuring LDL and HDL particles directly, but by measuring the amount of cholesterol carried by these lipoproteins. It is not generally appreciated how much the amount of cholesterol per particle varies from person to person, especially for LDL, because of differences in the relative amounts of cholesterol ester and triglycerides in the particle core as well as differences in particle diameter. As a consequence of the magnitude and prevalence of this lipid compositional variability, even the most accurate lipoprotein cholesterol measurements will, for many individuals, provide an inaccurate measure of the number of circulating lipoprotein particles and the CAD risk they confer.
View Article and Find Full Text PDF