Movement disorders, such as stroke and amyotrophic lateral sclerosis, result in loss of upper limb function and, hence, severe impairments of bimanual coordination. Although motor imagery is increasingly used to enhance neurorehabilitation, cognitive and neurophysiological parameters that inform effective strategies remain elusive. The aim of the present study is to elucidate the neural dynamics that underlie learning during real and imagined movement using both unimanual and bimanual coordination patterns.
View Article and Find Full Text PDFMotor imagery is increasingly being used in clinical settings, such as in neurorehabilitation and brain computer interface (BCI). In stroke, patients lose upper limb function and must re-learn bimanual coordination skills necessary for the activities of daily living. Physiotherapists integrate motor imagery with physical rehabilitation to accelerate recovery.
View Article and Find Full Text PDF