This review describes simple and useful concepts for predicting and tuning the pK(a) values of basic amine centers, a crucial step in the optimization of physical and ADME properties of many lead structures in drug-discovery research. The article starts with a case study of tricyclic thrombin inhibitors featuring a tertiary amine center with pK(a) values that can be tuned over a wide range, from the usual value of around 10 to below 2 by (remote) neighboring functionalities commonly encountered in medicinal chemistry. Next, the changes in pK(a) of acyclic and cyclic amines upon substitution by fluorine, oxygen, nitrogen, and sulfur functionalities, as well as carbonyl and carboxyl derivatives are systematically analyzed, leading to the derivation of simple rules for pK(a) prediction.
View Article and Find Full Text PDFIn the completion of our fluorine scan of tricyclic inhibitors to map the fluorophilicity/fluorophobicity of the thrombin active site, a series of 11 new ligands featuring alkyl, alkenyl, and fluoroalkyl groups was prepared to explore fluorine effects on binding into the hydrophobic proximal (P) pocket, lined by Tyr 60A and Trp 60D, His 57, and Leu 99. The synthesis of the tricyclic scaffolds was based on the 1,3-dipolar cycloaddition of azomethine ylides, derived from L-proline and 4-bromobenzaldehyde, with N-(4-fluorobenzyl)maleimide. Introduction of alkyl, alkenyl, and partially fluorinated alkyl residues was achieved upon substitution of a sulfonyl group by mixed Mg/Zn organometallics followed by oxidation/deoxyfluorination, as well as oxidation/reduction/deoxyfluorination sequences.
View Article and Find Full Text PDFA series of 16 tricyclic thrombin inhibitors was prepared by using the 1,3-dipolar cycloaddition of azomethine ylides derived from 3- or 4-hydroxyproline and 4-bromobenzaldehyde, with N-(4-fluorobenzyl)maleimide as the key step. The terminal pyrrolidine ring of the inhibitors was systematically substituted to explore the potential bioisosteric behavior of C-F, C-OH, and C-OMe residues pointing into the environment of the catalytic center of a serine protease. X-ray crystal structure analyses revealed a distinct puckering preference of this ring.
View Article and Find Full Text PDFTwo series of tricyclic inhibitors of the serine protease thrombin, imides (+/-)-1-(+/-)-8 and lactams (+/-)-9-(+/-)-13, were analysed to evaluate contributions of orthogonal multipolar interactions with the backbone C=O moiety of Asn98 to the free enthalpy of protein-ligand complexation. The lactam derivatives are much more potent and more selective inhibitors (K(i) values between 0.065 and 0.
View Article and Find Full Text PDF