Background Experimental studies show that high-sodium intake affects the innate immune system, among others with increased circulating granulocytes. Whether this relationship exists on a population level and whether this relates to disease outcomes is unclear. We aimed to test the hypotheses that (1) sodium intake is associated with granulocytes on a population level; (2) granulocytes are associated with the presence of hypertension and both cardiovascular and renal outcomes; and (3) the relation between high-sodium intake and these outcomes is mediated by granulocytes.
View Article and Find Full Text PDFBackground: Guidelines recommend treatment of dysnatremias to be guided by formulas based on the Edelman equation. This equation describes the relation between plasma sodium concentration and exchangeable cations. However, this formula does not take into account clinical parameters that have recently been associated with local tissue sodium accumulation, which occurs without concurrent water retention.
View Article and Find Full Text PDFBackground: By binding to negatively charged polysaccharides called glycosaminoglycans, sodium can be stored in the body-particularly in the skin-without concurrent water retention. Concordantly, individuals with changed glycosaminoglycan structure (e.g.
View Article and Find Full Text PDFThe retinal microcirculation is increasingly receiving credit as a relatively easily accessible microcirculatory bed that correlates closely with clinical cardiovascular outcomes. The effect of high salt (NaCl) intake on the retinal microcirculation is currently unknown. Therefore, we performed an exploratory randomized cross-over dietary intervention study in 18 healthy males.
View Article and Find Full Text PDFAn increasing body of evidence shows a role for macrophages and monocytes (as their precursors) in hypertension, but with conflicting results with regard to whether they are protective or harmful. Therefore, we systematically reviewed the effect of macrophage interventions on blood pressure in animal models, to explore which factors determine the blood pressure increasing vs. decreasing effect.
View Article and Find Full Text PDFAlpha-lipoic acid (ALA) is a natural short-chain fatty acid that has attracted great attention in recent years as an antioxidant molecule. However, some concerns have been recently raised regarding its safety profile. To address the issue, we aimed to assess ALA safety profile through a systematic review of the literature and a meta-analysis of the available randomized placebo-controlled clinical studies.
View Article and Find Full Text PDFAnimal studies show that high-salt diet affects T-cell subpopulations, but evidence in humans is scarce and contradictory. This pilot study investigated the effect of a 2-week high-salt diet on T-cell subpopulations (ie, γδ T cells, Th17 cells, and regulatory T cells) in five healthy males. The mean (SD) age of the participants was 33 (2) years, with normal body mass index, kidney function, and baseline blood pressure.
View Article and Find Full Text PDFIntroduction: Patients with type 1 diabetes are susceptible to hypertension, possibly resulting from increased salt sensitivity and accompanied changes in body fluid composition. We examined the effect of a high-salt diet (HSD) in type 1 diabetes on hemodynamics, including blood pressure (BP) and body fluid composition.
Research Design And Methods: We studied eight male patients with type 1 diabetes and 12 matched healthy controls with normal BP, body mass index, and renal function.
Type 1 diabetes patients are more prone to have hypertension than healthy individuals, possibly mediated by increased blood pressure (BP) sensitivity to high salt intake. The classical concept proposes that the kidney is central in salt-mediated BP rises, by insufficient renal sodium excretion leading to extracellular fluid volume expansion. Recent animal-derived findings, however, propose a causal role for disturbance of macrophage-mediated lymphangiogenesis.
View Article and Find Full Text PDF