Microencapsulation of pristine core liquids in polymer shells has critical applications in thermal energy storage and management, targeted drug delivery, and carbon capture, among others. Herein, we report a novel encapsulation approach based on a double emulsion soft-template to produce microcapsules comprised of an ionic liquid (IL) core in a degradable polymer shell. We demonstrate the production of [IL-in-oil]-in-oil (IL/O/O) double emulsions, in which the oil interphase (O) contains a CO-derived polycarbonate bearing vinyl pendant groups, tetrathiol small molecule crosslinker, and photoinitiator; upon irradiation of the double emulsion under low shear, thiol-ene crosslinking of the loaded species results in the formation of a robust shell around the pure IL droplets.
View Article and Find Full Text PDFWe present soft-template encapsulation of salt hydrate phase change materials (PCMs) using modified silica particles to both stabilize emulsions and serve as initiators for organocatalyzed photoredox ATRP. The resulting core-shell structures have high core loading and are robust to thermal cycling. Critically, this strategy eliminates the need for a reagent in the core phase, thus preserving purity, and offers the ability to tailor shell composition for desired applications.
View Article and Find Full Text PDFDiffusiophoresis is the migration of a colloidal particle in water driven by concentration gradients of cosolutes such as salts. We have experimentally characterized the diffusiophoresis of tyloxapol micelles in the presence of MgSO, a strong salting-out agent. Specifically, we determined the multicomponent-diffusion coefficients using Rayleigh interferometry, cloud points, and dynamic-light-scattering diffusion coefficients on the ternary tyloxapol-MgSO-water system at 25 °C.
View Article and Find Full Text PDFMicellization is a phenomenon of central importance in surfactant solutions. Here, we demonstrate that the diffusion-based spreading of the free boundary between a micellar aqueous solution and pure water yields a one-dimensional spatial profile of surfactant concentration that can be used to identify the critical micelle concentration, here denoted as *. This can be achieved because dilution of micelles into water leads to their dissociation at a well-defined position along the concentration profile and an abrupt increase in the diffusion coefficient.
View Article and Find Full Text PDFThe combined effect of viscosity ratio, interfacial tension, and disperse phase density on the process of droplet formation during emulsification was evaluated. For that aim, emulsification by ultrasonication of oil/water systems with viscosity ratios between 1 and 600, with and without surfactant was performed. The time evolution of the average droplet size was estimated by dynamic light scattering measurements.
View Article and Find Full Text PDF