Reflex seizures are consistently evoked by a specific afferent stimulus or by patient activity. Patients experiencing reflex seizures when playing a game on a mobile phone are rarely reported. We describe a boy with reflex seizures after prolonged exposure to the game, Cut the rope, on his mobile phone.
View Article and Find Full Text PDFPurpose: Malformations of cortical development (MCD) are a phenotypically and genetically heterogeneous group of disorders, for which the diagnostic rate of genetic testing in a clinical setting remains to be clarified. In this study we aimed to assess the diagnostic rate of germline and pathogenic variants using a custom panel in a heterogeneous group of subjects with MCD and explore genotype-phenotype correlations.
Methods: A total of 84 subjects with different MCD were enrolled.
Background: Hypochondroplasia is a rare skeletal dysplasia characterized by disproportionately short stature, lumbar lordosis, and limited extension of the elbow caused by mutations in the fibroblast growth factor receptor 3 (FGFR3) gene that plays a role in controlling nervous system development. Hypochondroplasia with FGFR3 mutation associated with bilateral medial temporal lobe anomalies and focal epilepsy was previously reported in several patients.
Patient: We report clinical, electroclinical, and neuroradiological findings of one patient affected by hypochondroplasia.
In CKD, the risk of kidney failure and death depends on the severity of proteinuria, which correlates with the extent of podocyte loss and glomerular scarring. We investigated whether proteinuria contributes directly to progressive glomerulosclerosis through the suppression of podocyte regeneration and found that individual components of proteinuria exert distinct effects on renal progenitor survival and differentiation toward a podocyte lineage. In particular, albumin prevented podocyte differentiation from human renal progenitors in vitro by sequestering retinoic acid, thus impairing retinoic acid response element (RARE)-mediated transcription of podocyte-specific genes.
View Article and Find Full Text PDFRecent studies implicated the existence in adult human kidney of a population of renal progenitors with the potential to regenerate glomerular as well as tubular epithelial cells and characterized by coexpression of surface markers CD133 and CD24. Here, we demonstrate that CD133+CD24+ renal progenitors can be distinguished in distinct subpopulations from normal human kidneys based on the surface expression of vascular cell adhesion molecule 1, also known as CD106. CD133+CD24+CD106+ cells were localized at the urinary pole of Bowman's capsule, while a distinct population of scattered CD133+CD24+CD106- cells was localized in the proximal tubule as well as in the distal convoluted tubule.
View Article and Find Full Text PDFMonocyte/ chemoattractant protein-1/chemokine ligand (CCL) 2 and stromal cell-derived factor-1/CXCL12 both contribute to glomerulosclerosis in mice with type 2 diabetes mellitus, through different mechanisms. CCL2 mediates macrophage-related inflammation, whereas CXCL12 contributes to podocyte loss. Therefore, we hypothesized that dual antagonism of these chemokines might have additive protective effects on the progression of diabetic nephropathy.
View Article and Find Full Text PDFGlomerular diseases account for 90% of end-stage kidney disease. Podocyte loss is a common determining factor for the progression toward glomerulosclerosis. Mature podocytes cannot proliferate, but recent evidence suggests that they can be replaced by renal progenitors localized within the Bowman's capsule.
View Article and Find Full Text PDFHuman natural killer (NK) cells comprise 2 main subsets, CD56(bright) and CD56(dim) cells, that differ in function, phenotype, and tissue localization. To further dissect the heterogeneity of CD56(dim) cells, we have performed transcriptome analysis and functional ex vivo characterization of human NK-cell subsets according to the expression of markers related to differentiation, migration or competence. Here, we show for the first time that the ability to respond to cytokines or to activating receptors is mutually exclusive in almost all NK cells with the exception of CD56(dim) CD62L(+) cells.
View Article and Find Full Text PDFGlomerular injury can involve excessive proliferation of glomerular epithelial cells, resulting in crescent formation and obliteration of Bowman's space. The origin of these hyperplastic epithelial cells in different glomerular disorders is controversial. Renal progenitors localized to the inner surface of Bowman's capsule can regenerate podocytes, but whether dysregulated proliferation of these progenitors contributes to crescent formation is unknown.
View Article and Find Full Text PDFDepletion of podocytes, common to glomerular diseases in general, plays a role in the pathogenesis of glomerulosclerosis. Whether podocyte injury in adulthood can be repaired has not been established. Here, we demonstrate that in the adult human kidney, CD133+CD24+ cells consist of a hierarchical population of progenitors that are arranged in a precise sequence within Bowman's capsule and exhibit heterogeneous potential for differentiation and regeneration.
View Article and Find Full Text PDFRecently, we have identified a population of renal progenitor cells in human kidneys showing regenerative potential for injured renal tissue of SCID mice. We demonstrate here that among all known chemokine receptors, human renal progenitor cells exhibit high expression of both stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7. In SCID mice with acute renal failure (ARF), SDF-1 was strongly up-regulated in resident cells surrounding necrotic areas.
View Article and Find Full Text PDFBone marrow-and adult kidney-derived stem/progenitor cells hold promise in the development of therapies for renal failure. Here is reported the identification and characterization of renal multipotent progenitors in human embryonic kidneys that share CD24 and CD133 surface expression with adult renal progenitors and have the capacity for self-renewal and multilineage differentiation. It was found that these CD24+CD133+ cells constitute the early primordial nephron but progressively disappear during nephron development until they become selectively localized to the urinary pole of Bowman's capsule.
View Article and Find Full Text PDFT helper (Th) 17 cells represent a novel subset of CD4+ T cells that are protective against extracellular microbes, but are responsible for autoimmune disorders in mice. However, their properties in humans are only partially known. We demonstrate the presence of Th17 cells, some of which produce both interleukin (IL)-17 and interferon (IFN)-gamma (Th17/Th1), in the gut of patients with Crohn's disease.
View Article and Find Full Text PDF