An altered gut microbiota is associated with type 1 diabetes (T1D), affecting the production of short-chain fatty acids (SCFA) and glucose homeostasis. We previously demonstrated that enhancing serum acetate and butyrate using a dietary supplement (HAMSAB) improved glycemia in non-obese diabetic (NOD) mice and patients with established T1D. The effects of SCFA on immune-infiltrated islet cells remain to be clarified.
View Article and Find Full Text PDFRecent research has confirmed the strong connection between imbalances in the oral and gut microbiome (oral-gut dysbiosis), periodontitis, and inflammatory conditions such as diabetes, Alzheimer's disease, and cardiovascular diseases. Microbiome modulation is crucial for preventing and treating several autoimmune and inflammatory diseases, including periodontitis. However, the causal relationships between the microbiome and its derived metabolites that mediate periodontitis and chronic inflammation constitute a notable knowledge gap.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder with poorly understood etiology. AD has several similarities with other "Western lifestyle" inflammatory diseases, where the gut microbiome and immune pathways have been associated. Previously, we and others have noted the involvement of metabolite-sensing GPCRs and their ligands, short-chain fatty acids (SCFAs), in protection of numerous Western diseases in mouse models, such as Type I diabetes and hypertension.
View Article and Find Full Text PDFButyrate produced by the gut microbiota has beneficial effects on metabolism and inflammation. Butyrate-producing bacteria are supported by diets with a high fiber content, such as high-amylose maize starch (HAMS). We investigated the effects of HAMS- and butyrylated HAMS (HAMSB)-supplemented diets on glucose metabolism and inflammation in diabetic db/db mice.
View Article and Find Full Text PDFGeraniin, an ellagitannin, has ameliorative properties against high-fat diet (HFD)-induced metabolic syndrome. Since geraniin has poor bioavailability, we hypothesised the interaction of this compound with gut microbiota as the main mechanism for improving metabolic aberrations. Male Sprague Dawley rats were divided into normal diet (ND)- and HFD-fed animals and treated with geraniin and an enriched extract of geraniin (GEE).
View Article and Find Full Text PDFBackground: Short-chain fatty acids (SCFAs) produced by the gut microbiota have beneficial anti-inflammatory and gut homeostasis effects and prevent type 1 diabetes (T1D) in mice. Reduced SCFA production indicates a loss of beneficial bacteria, commonly associated with chronic autoimmune and inflammatory diseases, including T1D and type 2 diabetes. Here, we addressed whether a metabolite-based dietary supplement has an impact on humans with T1D.
View Article and Find Full Text PDFTraumatic brain injury (TBI) alters microbial populations present in the gut, which may impact healing and tissue recovery. However, the duration and impact of these changes on outcome from TBI are unknown. Short-chain fatty acids (SCFAs), produced by bacterial fermentation of dietary fiber, are important signaling molecules in the microbiota gut-brain axis.
View Article and Find Full Text PDFIntestinal barrier is essential for dietary products and microbiota compartmentalization and therefore gut homeostasis. When this barrier is broken, cecal content overflows into the peritoneal cavity, leading to local and systemic robust inflammatory response, characterizing peritonitis and sepsis. It has been shown that IL-1β contributes with inflammatory storm during peritonitis and sepsis and its inhibition has beneficial effects to the host.
View Article and Find Full Text PDFObjectives: During gastrointestinal infection, dysbiosis can result in decreased production of microbially derived short-chain fatty acids (SCFAs). In response to the presence of intestinal pathogens, we examined whether an engineered acetate- or butyrate-releasing diet can rectify the deficiency of SCFAs and lead to the resolution of enteric infection.
Methods: We tested whether a high acetate- or butyrate-producing diet (HAMSA or HAMSB, respectively) condition infection in mice and assess its impact on host-microbiota interactions.
Obesity is linked with altered microbial short-chain fatty acids (SCFAs), which are a signature of gut dysbiosis and inflammation. In the present study, we investigated whether tributyrin, a prodrug of the SCFA butyrate, could improve metabolic and inflammatory profiles in diet-induced obese mice. Mice fed a high-fat diet for eight weeks were treated with tributyrin or placebo for another six weeks.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2021
Diet-microbiota related inflammatory conditions such as obesity, autoimmune type 1 diabetes (T1D), type 2 diabetes (T2D), cardiovascular disease (CVD) and gut infections have become a stigma in Western societies and developing nations. This book chapter examines the most relevant pre-clinical and clinical studies about diet-gut microbiota approaches as an alternative therapy for diabetes. We also discuss what we and others have extensively investigated- the power of dietary short-chain fatty acids (SCFAs) technology that naturally targets the gut microbiota as an alternative method to prevent and treat diabetes and its related complications.
View Article and Find Full Text PDFMicrobial metabolites have a profound effect on the development of type 1 diabetes (T1D). The cross-talk between the gut microbiota, the nervous system, and immune system is necessary to establish and maintain immune and gut tolerance. As quoted by Hippocrates, "All disease begins in the gut.
View Article and Find Full Text PDFButyrate is a short-chain fatty acid derived from the metabolism of indigestible carbohydrates by the gut microbiota. Butyrate contributes to gut homeostasis, but it may also control inflammatory responses and host physiology in other tissues. Butyrate inhibits histone deacetylases, thereby affecting gene transcription, and also signals through the metabolite-sensing G protein receptor (GPR)109a.
View Article and Find Full Text PDFMaternal immune dysregulation seems to affect fetal or postnatal immune development. Preeclampsia is a pregnancy-associated disorder with an immune basis and is linked to atopic disorders in offspring. Here we show reduction of fetal thymic size, altered thymic architecture and reduced fetal thymic regulatory T (Treg) cell output in preeclamptic pregnancies, which persists up to 4 years of age in human offspring.
View Article and Find Full Text PDFThe rising global incidence of autoimmune and inflammatory conditions can be attributed to changes in the large portion of the immune system that belongs to our gastrointestinal tract (GI). The intestinal immune system serves as a gatekeeper to prevent pathogenic invasions and to preserve a healthier gut microbiota. The gut microbiota has been increasingly studied as a fundamental contributor to the state of health and disease.
View Article and Find Full Text PDFAlterations in diet and gut microbial ecology underlie the pathogenesis of type 1 diabetes (T1D). In the non-obese diabetic (NOD) mouse, we found high concentrations of bacterial metabolites acetate and butyrate in blood and faeces correlated with protection from disease. We reconstituted germ free (GF) NOD mice with fecal bacteria from protected NOD mice fed with high acetate- and butyrate-yielding diets, to test whether the transferred gut microbiota protect against the development of T1D.
View Article and Find Full Text PDFNutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions.
View Article and Find Full Text PDFGut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon.
View Article and Find Full Text PDFClin Transl Immunology
November 2016
It is now convincingly clear that diet is one of the most influential lifestyle factors contributing to the rise of inflammatory diseases and autoimmunity in both developed and developing countries. In addition, the modern 'Western diet' has changed in recent years with increased caloric intake, and changes in the relative amounts of dietary components, including lower fibre and higher levels of fat and poor quality of carbohydrates. Diet shapes large-bowel microbial ecology, and this may be highly relevant to human diseases, as changes in the gut microbiota composition are associated with many inflammatory diseases.
View Article and Find Full Text PDFAsthma is prevalent in Western countries, and recent explanations have evoked the actions of the gut microbiota. Here we show that feeding mice a high-fibre diet yields a distinctive gut microbiota, which increases the levels of the short-chain fatty acid, acetate. High-fibre or acetate-feeding led to marked suppression of allergic airways disease (AAD, a model for human asthma), by enhancing T-regulatory cell numbers and function.
View Article and Find Full Text PDFDiet and the gut microbiota may underpin numerous human diseases. A major metabolic product of commensal bacteria are short-chain fatty acids (SCFAs) that derive from fermentation of dietary fibre. Here we show that diets deficient or low in fibre exacerbate colitis development, while very high intake of dietary fibre or the SCFA acetate protects against colitis.
View Article and Find Full Text PDF