Publications by authors named "Eliana Kaminska"

In this work, Ni/ZnO:Al and Au/ZnO:Al structures are proposed as efficient ohmic contacts to p-GaN. Through a careful selection of deposition parameters and annealing environment, we not only achieve the formation of high-quality ohmic contacts but also gain insights into the interfacial reactions, enhancing the understanding of conventional Ni/Au contact formation on p-GaN. In particular, the notion that the presence of NiO at the interface is enough for an ohmic contact to form is challenged by showing that in fact it has to be NiO formed at the interface from metallic Ni and additional oxygen.

View Article and Find Full Text PDF

The impact of wet treatment using an (NH)S-alcohol solution on the interface state of the p-GaN/Ni/Au/Pt contact system and laser diode processing was investigated. Sulfur wet cleaning resulted in reduced surface roughness and contact resistivity. The lowest specific contact resistance ( < 1 × 10 Ω·cm) was achieved with samples treated with an (NH)S-isopropanol solution, whereas the highest resistivity ( = 3.

View Article and Find Full Text PDF

In this paper, we investigate the effect of Pd thickness and heat treatment on Pd/Ni/Au/p-GaN metal contacts. The as-deposited samples exhibit a smooth morphology and non-linear I-V characteristics. Heat treatment in a N atmosphere leads to degradation of the contact microstructure, resulting in diffusion of Ga, void formation on the interface and mixing of metals.

View Article and Find Full Text PDF

One of the key issues in GaN-based devices is the resistivity and technology of ohmic contacts to n-type GaN. This work presents, for the first time, effective intentional oxygen doping of sputtered GaN films to obtain highly conductive n-GaN:O films. We have developed a novel and simple method to obtain these films.

View Article and Find Full Text PDF

The main objective of this work is to demonstrate and validate the feasibility of fabricating (Al, In) GaN laser diodes with etched facets. The facets are fabricated using a two-step dry and wet etching process: inductively coupled plasma-reactive ion etching in chlorine, followed by wet etching in tetramethylammonium hydroxide (TMAH). For the dry etching stage, an optimized procedure was used.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines how bare and zinc-covered ZnTe nanowires (NWs) change structurally before and after being oxidized at 300 °C.
  • Using various microscopy and spectroscopy techniques, the researchers found that oxidation transforms the outer layer of the NWs into ZnO and affects the inner structure as well.
  • It was discovered that adding thin Zn shells to the bare NWs before oxidation enhances the quality of the ZnO formed, leading to uniform shells in the zinc-covered NWs, which could be crucial for creating efficient ZnTe-based nano-devices.
View Article and Find Full Text PDF

AlGaN/GaN high electron mobility transistors on semi-insulating bulk ammonothermal GaN have been investigated. By application of regrown ohmic contacts, the problem with obtaining low resistance ohmic contacts to low-dislocation high electron mobility transistor (HEMT) structures was solved. The maximum output current was about 1 A/mm and contact resistances was in the range of 0.

View Article and Find Full Text PDF

In this paper, the results of detailed X-ray photoelectron spectroscopy (XPS) studies combined with atomic force microscopy (AFM) investigation concerning the local surface chemistry and morphology of nanostructured ZnO thin films are presented. They have been deposited by direct current (DC) reactive magnetron sputtering under variable absolute Ar/O₂ flows (in sccm): 3:0.3; 8:0.

View Article and Find Full Text PDF

We designed and fabricated multilayer metal/metal-oxide surface relief diffractive grating structures by growing alternating Pt and SnO(x) layers. Optical interrogation at 633 nm reveals the temperature dependence of their reflection and transmission diffractive effects. This function is explored here in the context of a remote, spatially localized, photonic temperature sensing operation, achieving sensitivity of 10% per °C for the zeroth-order in the transmission mode.

View Article and Find Full Text PDF

A photothermal experiment with mirage detection was used to determine the thermal conductivity of various thin films deposited on semiconductor substrates. The first type consisted of conducting oxide films: ZnO and CdO deposited on GaSb:Te, while the other contained high dielectric constant HfO(2) layers on Si. All films were fabricated using a magnetron sputtering technique.

View Article and Find Full Text PDF

The optogeometric properties of various sensitive thin films involved in gas sensing applications are investigated by using the m-line technique and atomic force microscopy. Variations of these optical properties are studied under butane and ozone exposure.

View Article and Find Full Text PDF