Publications by authors named "Eliana Hechter"

Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic studies have identified many genetic loci linked to diseases and traits, but most known genes account for less than half of heritability, leading to the theory that rare genetic variants may be important.
  • Common variant studies (CVAS) and rare variant studies (RVAS) are closely related but focus on different types of genetic variants, with the paper outlining their similarities and differences along with a framework for designing RVAS.
  • Effective RVAS require large sample sizes, with recommendations suggesting at least 25,000 cases for discovery to ensure reliable results, emphasizing the need for comprehensive data in both common and rare variant studies.
View Article and Find Full Text PDF

Background/aims: Central hypothyroidism (CH) in children is rare and may be due to a variety of genetic defects. Most of these defects, but not all, are associated with additional pituitary hormone deficits. In a young child presenting with CH, it is important to determine whether additional pituitary hormone deficiencies are present, but this may be difficult to establish clinically.

View Article and Find Full Text PDF

We present the case of a 19-year-old man with a growth disorder, which was undefined, despite extensive evaluation. Whole exome sequencing demonstrated a novel homozygous frameshift mutation in CUL7, one of the causative genes of 3-M syndrome. We discuss the utility of exome sequencing in diagnosing rare disorders.

View Article and Find Full Text PDF

Human genetics has been haunted by the mystery of "missing heritability" of common traits. Although studies have discovered >1,200 variants associated with common diseases and traits, these variants typically appear to explain only a minority of the heritability. The proportion of heritability explained by a set of variants is the ratio of (i) the heritability due to these variants (numerator), estimated directly from their observed effects, to (ii) the total heritability (denominator), inferred indirectly from population data.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified hundreds of associated loci across many common diseases. Most risk variants identified by GWAS will merely be tags for as-yet-unknown causal variants. It is therefore possible that identification of the causal variant, by fine mapping, will identify alleles with larger effects on genetic risk than those currently estimated from GWAS replication studies.

View Article and Find Full Text PDF

Most findings from genome-wide association studies (GWAS) are consistent with a simple disease model at a single nucleotide polymorphism, in which each additional copy of the risk allele increases risk by the same multiplicative factor, in contrast to dominance or interaction effects. As others have noted, departures from this multiplicative model are difficult to detect. Here, we seek to quantify this both analytically and empirically.

View Article and Find Full Text PDF