We have explored the reaction of a three-components mixture of aminomalononitrile, urea and α-amino acid methyl esters for the multicomponent synthesis substituted purines resembling PNA's building blocks. 2,6-diamino-purines, 6-amino-3,9-dihydro-2H-purin-2-one (iso-guanines), and 3,9-dihydro-6H-purin-6-one derivatives, selectively decorated at C(8)-position of the purine ring with different amino acid residues, were obtained from acceptable to good yields. The regio-selectivity of the transformation was controlled by the use of urea in the ternary mixture and by the annulation agent involved in the ring-closure of amino-imidazole carbonitrile intermediates.
View Article and Find Full Text PDFThis work describes the possibility to combine multicomponent chemistry and multienzymes cascade transformations in a unique reactive framework to yield highly functionalized 1,4-benzoxazines under favorable heterogeneous conditions. The synthetic scheme involved the generation in situ of electrophilic reactive quinone intermediates of tyrosol esters catalyzed by lipase M and tyrosinase followed by nucleophilic 1,6-Michael addition of selected α-amino acid methyl esters, and successive intramolecular lactonization and aromatization processes. The immobilization of the multienzymes cascade on electroactive lignin nanoparticles improved the sustainability and recyclability of the overall system.
View Article and Find Full Text PDFA dual-target strategy was designed for the application of lignin nanoparticles in the lipase mediated biosynthesis of novel 3--ethyl-L-ascorbyl-6-ferulate and 3--ethyl-L-ascorbyl-6-palmitate and in their successive solvent-shift encapsulation in order to improve stability and antioxidant activity against temperature and pH-dependent degradation. The loaded lignin nanoparticles were fully characterized in terms of kinetic release, radical scavenging activity and stability under pH 3 and thermal stress (60 °C), showing improved antioxidant activity and high efficacy in the protection of ascorbic acid esters from degradation.
View Article and Find Full Text PDFChitosan and lignin mixed nanoparticles were prepared by layer-by-layer and nanoprecipitation methodologies as responsive platforms for sustainable biosensors. The novel nanoparticles showed effective chemophysical and electrochemical properties dependent on the preparation methodology, molecular weight of chitosan, and type of lignin. HOMO-LUMO energy gap calculations suggested the presence of structure-activity relationships between the electrochemical responsiveness and the order and orientation of lignin aromatic subunits and chitosan chains in the nanodevices.
View Article and Find Full Text PDFPhotoexcitation of pheomelanin produces high-energy singlet oxygen and the superoxide anion, which are reactive species in damage of cellular targets. In principle, these species can be involved in processes of synthetic utility when adequate experimental conditions are defined. Here, we describe that pheomelanin performs as a selective UVA antenna for the horseradish peroxidase oxidative coupling of substituted phenols to biologically active Pummerer's ketones under 2-methyltetrahydrofuran/buffer biphasic conditions.
View Article and Find Full Text PDFSunscreen filters may be degraded after prolonged UV exposure with loss of their shielding property and generation of harmful radical species. They are contained in cosmetic formulations in high concentrations, so the improvement of photostability is of relevance for safety concerns. We report here that lignin nanoparticles are sustainable carriers and photostabilizers of two common UV chemical filters, namely, avobenzone and octyl methoxycinnamate.
View Article and Find Full Text PDFThe regulation of nervous and cardiovascular systems and some brain-related behaviors, such as stress, panic, anxiety, and depression, are strictly dependent on the levels of the main catecholamines of clinical interest, dopamine (DA), epinephrine (EP), and norepinephrine (NEP). Therefore, there is an urgent need for a reliable sensing device able to accurately monitor them in biological fluids for early diagnosis of the diseases related to their abnormal levels. In this paper, we present the first tyrosinase (Tyr)-based biosensor based on chitosan nanoparticles (ChitNPs) for total catecholamine (CA) detection in human urine samples.
View Article and Find Full Text PDFLignin nanoparticles containing saccharides from fishery wastes were prepared as sustainable biofillers for advanced materials. Organosolv lignin and Kraft lignin were used as polyphenol components in association with chitosan and chitooligosaccharides. The chemophysical and biological activities of lignin/saccharide nanoparticles, such as UV-shielding, antioxidant, and antimicrobial activities, were found to be dependent on both molecular weight and deacetylation degree of saccharides, with the best performance being obtained in the presence of low-molecular-weight and highly deacetylated chitooligosaccharides.
View Article and Find Full Text PDFThe overproduction of eumelanin leads to a panel of unaesthetic hyper-pigmented skin diseases, including melasma and age spots. The treatment of these diseases often requires the use of tyrosinase inhibitors, which act as skin whitening agents by inhibiting the synthesis of eumelanin, with harmful side effects. We report here that laccase from in association with a cocktail of natural phenol redox mediators efficiently degraded eumelanin from , offering an alternative procedure to traditional whitening agents.
View Article and Find Full Text PDFLignin nanoparticles (LNPs) are applied in several industrial applications. The nanoprecipitation of LNPs is fast and inexpensive but currently still limited to the use of hazardous organic solvents, making it difficult to apply them on a large scale. Here, we report a scalable nanoprecipitation procedure for the preparation of colloidal lignin nanoparticles (cLNPs) by the use of the green solvents dimethylisosorbide and isopropylidene glycerol.
View Article and Find Full Text PDFNovel nanoarchitectures based on lignin nanoparticles (LNPs) were designed and realized for electrochemical eco-friendly biosensing development. Two types of lignin nanoparticles were utilized for the modification of a gold bare electrode, namely organosolv (OLNPs) and kraft lignin (KLNPs) nanoparticles, synthetized from a sulfur-free and a sulfur lignin, respectively. The electrochemical behavior of LNP-modified electrodes was studied using two electrochemical techniques, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFGreen, biocompatible, and biodegradable antioxidants represent a milestone in cosmetic and cosmeceutical applications. Lignin is the most abundant polyphenol in nature, recovered as a low-cost waste from the pulp and paper industry and biorefinery. This polymer is characterized by beneficial physical and chemical properties which are improved at the nanoscale level due to the emergence of antioxidant and UV shielding activities.
View Article and Find Full Text PDFPyomelanin mimics from homogentisic acid (HGA) and gentisic acid (GA) were biosynthesized by the oxidative enzyme laccase at physiological pH to obtain water soluble melanins. The pigments show brown-black color, broad band visible light absorption, a persistent paramagnetism and high antioxidant activity. The EPR approach shows that at least two different radical species are present in both cases, contributing to the paramagnetism of the samples.
View Article and Find Full Text PDFLignin nanoparticles (LNPs) acted as a renewable and efficient platform for the immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOX) by a layer by layer procedure. The use of concanavalin A as a molecular spacer ensured the correct orientation and distance between the two enzymes as confirmed by Förster resonance energy transfer measurement. Layers with different chemo-physical properties tuned in a different way the activity and kinetic parameters of the enzymatic cascade, with cationic lignin performing as the best polyelectrolyte in the retention of the optimal Con A aggregation state.
View Article and Find Full Text PDFReactive lignin nanocapsules catalyze a pigmentation reaction to furnish an innovative type of sustainable polyvalent bioink. In this nanodevice, the pigment, vehicle, binder, and additive are included in a single confined spherical space. Bioinks with different shades of color, black, gray, yellow-like, pink-like, and red/brown hues, have been prepared by selecting the reactants and the pigmentation process.
View Article and Find Full Text PDFMicrocapsules and nanocapsules based on the contemporary presence of sulfonate lignin and tannic acid have been prepared by the layer-by-layer procedure, using MnCO or organosolv lignin as core templates, and polydiallyldimethylammonium chloride or chitosan as positive charged supporting layers. Nanocapsules and microcapsules of mixed polyphenols showed antioxidant activity, UV-shielding properties, and electrochemical responsiveness, higher than that in homopolymer nanocapsule counterparts and of the native polyphenols, suggesting the presence of synergistic effects between the two components. The presence of UV-visible bathochromic shift suggested the formation of J-aggregates characterized by an orientation of the adjacent phenolic rings parallel to the longitudinal direction of the layer, with a head-to-tail like arrangement.
View Article and Find Full Text PDFSustainable catalysts for the oxidation of phenol derivatives under environmentally friendly conditions were prepared by the functionalization of lignin nanoparticles with tyrosinase. Lignin, the most abundant polyphenol in nature, is the main byproduct in the pulp and paper manufacturing industry and biorefinery. Tyrosinase has been immobilized by direct adsorption, encapsulation, and layer-by-layer deposition, with or without glutaraldehyde reticulation.
View Article and Find Full Text PDFDifferent catechol and pyrogallol derivatives have been synthesized by oxidation of coumarins with 2-iodoxybenzoic acid (IBX) in DMSO at 25 °C. A high regioselectivity was observed in accordance with the stability order of the incipient carbocation or radical benzylic-like intermediate. The oxidation was also effective in water under heterogeneous conditions by using IBX supported on polystyrene.
View Article and Find Full Text PDF