Nitric oxide plays an important role in several physiological processes. This study investigates model ruthenium ammine coordination compounds to control NO bioavailability: cis-[RuCl(NO)(NH3)4]+ (1+), cis-[RuCl(NO)(NH3)4]2+ (12+), cis-[RuCl(NO)(NH3)4]3+ (13+), trans-[RuCl(NO)(NH3)4]+ (2+), trans-[RuCl(NO)(NH3)4]2+ (22+), trans-[RuCl(NO)(NH3)4]3+ (23+), [Ru(NO)(NH3)5]+ (3+), [Ru(NO)(NH3)5]2+ (32+), and [Ru(NO)(NH3)5]3+ (33+). We employed natural population analysis (NPA) atomic charges (qNPA) and the LUMO to identify the main reduction sites in the complexes 1, 2 and 3.
View Article and Find Full Text PDFObjectives: Vascular smooth muscle cell (VSMC) migration and proliferation at sites of vascular injury are both critical steps in the development of intimal hyperplasia (IH). Local delivery of nitric oxide (NO) largely prevents these events. Among the NO donors, tetraazamacrocyclic nitrosyl complexes, such as trans-[Ru(NO)Cl(cyclam)](PF ) (cyclamNO), gained attention for their features, which include the possibility of being embedded in solid matrices, and ability to participate in a nitrite/NO catalytic conversion cycle.
View Article and Find Full Text PDFBackground: Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved.
Objective: To evaluate the vascular response of the tetraamines trans-[Ru(II)(NH3)4(Py)(NO)](3+), trans-[Ru(II)(Cl)(NO) (cyclan)](PF6)2, and trans-[Ru(II)(NH3)4(4-acPy)(NO)](3+).
The immobilization and characterization of trans-[Ru(NO)Cl(cyclam)](PF6)2 (cyclam=1,4,8,11-tetraazacyclotetradecane), and [Ru(NO)(Hedta)] (Hedta=ethylenediaminetetraacetic acid) entrapped in poly(d,l-lactic-co-glycolic) acid (PLGA) nanoparticles (NP) using the double emulsification process is described. Scanning electron microscopy and dynamic light scattering revealed that the particles are spherical in shape, have a size distribution between 220 and 840 nm of diameter, and have a tendency to aggregate confirmed by a zeta potential between -3.2 and +3.
View Article and Find Full Text PDFRuthenium complexes including nitrosyl or nitrite complexes are particularly interesting because they can not only scavenge but also release nitric oxide in a controlled manner, regulating the NO-level in vivo. The judicious choice of ligands attached to the [RuNO] core has been shown to be a suitable strategy to modulate NO reactivity in these complexes. In order to understand the influence of different equatorial ligands on the electronic structure of the Ru-NO chemical bonding, and thus on the reactivity of the coordinated NO, we propose an investigation of the nature of the Ru-NO chemical bond by means of energy decomposition analysis (EDA), considering tetraamine and tetraazamacrocycles as equatorial ligands, prior to and after the reduction of the {RuNO}(6) moiety by one electron.
View Article and Find Full Text PDFNitric oxide plays an important role in various biological processes, such as neurotransmission, blood pressure control, immunological responses, and antioxidant action. The control of its local concentration, which is crucial for obtaining the desired effect, can be achieved with exogenous NO-carriers. Coordination compounds, in particular ruthenium(III) and (II) amines, are good NO-captors and -deliverers.
View Article and Find Full Text PDFChemical reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam, fac-[Ru(NO)Cl(2)(κ(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl·H(2)O ((1-carboxypropyl)cyclam = 3-(1,4,8,11-tetraazacyclotetradecan-1-yl)propionic acid)), (I) are described. Chloride ligands do not undergo aquation reactions (at 25 °C, pH 3). The rate of nitric oxide (NO) dissociation (k(obs-NO)) upon reduction of I is 2.
View Article and Find Full Text PDFThe ruthenium nitrosyl complex trans-[Ru(NO)(NH(3))(4)(py)](PF(6))(3) (pyNO), a nitric oxide (NO) donor, was studied in regard to the release of NO and its impact both on isolated mitochondria and HepG2 cells. In isolated mitochondria, NO release from pyNO was concomitant with NAD(P)H oxidation and, in the 25-100 microM range, it resulted in dissipation of mitochondrial membrane potential, inhibition of state 3 respiration, ATP depletion and reactive oxygen species (ROS) generation. In the presence of Ca(2+), mitochondrial permeability transition (MPT), an unspecific membrane permeabilization involved in cell necrosis and some types of apoptosis, was elicited.
View Article and Find Full Text PDFThe complex fac-[Ru(NO)Cl2(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl.H2O (1-carboxypropyl)cyclam=3-(1,4,8,11-tetraazacyclotetradecan-1-yl)propionic acid) was prepared in a one pot reaction by mixing equimolar amounts of RuNOCl 3 and (1-carboxypropyl)cyclam and was characterized by X-ray crystallography, electrospray ionization tandem mass spectrometry (ESI-MS/MS), elemental analysis, NMR, and electronic and vibrational (IR) spectroscopies. fac-[Ru(NO)Cl 2(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl.
View Article and Find Full Text PDFThe NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py=pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600nm, and have low tendency to aggregate.
View Article and Find Full Text PDFIrradiation of trans-[RuCl(cyclam)(NO)](2+), cyclam is 1,4,8,11-tetraazacyclotetradecane, at pHs 1-7.4, with near UV light results in the release of NO and formation of trans-[Ru(III)Cl(OH)(cyclam)](+) with pH dependent quantum yields (from approximately 0.01 to 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2006
The immobilization and properties of the nitric oxide donor trans-[Ru(NO)Cl(cyclam)](PF(6))(2), RuNO, entrapped in a silica matrix by the sol-gel process is reported herein. The entrapped nitrosyl complex was characterized by spectroscopic (UV-vis, infrared (IR), X-ray photoelectron, and (13)C and (29)Si MAS NMR) and electrochemical techniques. The entrapped species exhibit one characteristic absorption band in the UV-vis region of the electronic spectrum at 354 nm and one IR nu(NO) stretching band at 1865 cm(-1), as does the RuNO species in aqueous solution.
View Article and Find Full Text PDFChem Commun (Camb)
September 2005
Light activation leads to release of NO from a silicate sol-gel material SG-RuNO prepared from the ruthenium complex, [Ru(salen)(OH2)(NO)]+ (salen = N,N'-bis-(salicylidene)ethyl-enediaminato); after photochemical NO photolabilization, SG-RuNO can be regenerated from the spent material via the subsequent reaction with aqueous nitrite.
View Article and Find Full Text PDFThe synthesis of cis-[Ru(II)(cyclen)(L)(x)](n+) (cyclen = 1,4,7,10-tetraazacyclododecane and L = 2,2'-bipyridine (bpy), phenanthroline (phen) or 4-cyanopyridinium (4-NCpyH(+))) is reported. The freshly prepared complexes are stable in aprotic solvents and cyclen undergoes oxidative dehydrogenation reaction at high pH. These compounds also present solvent dependent conformational isomerization.
View Article and Find Full Text PDFRuthenium(II/III) complexes able to bind and release NO* were tested in vivo, in conscious Wistar rats instrumented for continuous blood pressure (BP) measurement and administration of in bolus injections (5 to 100 nmol/Kg i.v.) of trans-[Ru(II)Cl(NO+)(cyclam)](PF6)2 (cyclam-NO) or sodium nitroprusside (SNP).
View Article and Find Full Text PDFNitric Oxide
August 2002
The hypotensive effect of RuNO was investigated in acute and chronic hypertensive rats, as well as in normotensive rats. Acute hypertension rats were used with 30% increase on basal BP (phenylephrine, angiotensin II (Ang II), N(G)-nitro-L-arginine methyl ester (L-NAME), and adult spontaneously hypertensive rats (SHR) (basal BP 168 +/- 3 mm Hg) were used as models for chronic hypertension. Rats were implanted with catheters (iv/ia) for BP measurements and for in bolus administration of RuNO, sodium nitroprusside (SNP), and acetylcholine (Ach) (10, 20, 40 nmol/kg, iv).
View Article and Find Full Text PDFThe hypotensive effect and the acute toxicity of trans-[Ru(NH(3))(4)P(OEt)(3)(NO)](PF(6))(3) (RuNO) were investigated in conscious animals. The approximate lethal dose of RuNO is 257.5 micromol/kg in mice i.
View Article and Find Full Text PDFThe photosensitized aquation of pentaammine(pyridine)ruthenium(II) by several dyes has been studied under conditions where only the sensitizers absorb light. The ratio of the quantum yields for ammine and pyridine substitution was the same as that for direct photoaquation. Sensitization was effective with singlet sensitizers Rhodamine-B (17 452 cm(-)(1)) and Safranine-T (17 690 cm(-)(1)), as well as the triplet sensitizer biacetyl (19 000 cm(-)(1)), but no reaction was observed with Neutral-Red (16 900 cm(-)(1)).
View Article and Find Full Text PDF