Publications by authors named "Elia Smeir"

Background: Obesity exerts multiple deleterious effects on the heart that may ultimately lead to cardiac failure. This study sought to characterize myocardial microstructure and function in an experimental model of obesity-related cardiac dysfunction.

Methods: Male C57BL/6N mice were fed either a high-fat diet (HFD; 60 kcal% fat, = 12) or standard control diet (9 kcal% fat, = 10) for 15 weeks.

View Article and Find Full Text PDF

Cardiolipin (CL) is a major cardiac mitochondrial phospholipid maintaining regular mitochondrial morphology and function in cardiomyocytes. Cardiac CL production includes its biosynthesis and a CL remodeling process. Here we studied the impact of CL biosynthesis and the enzyme cardiolipin synthase (CLS) on cardiac function.

View Article and Find Full Text PDF

Cardiometabolic disorders, such as diabetes, obesity, or metabolic syndrome, are often considered as key comorbidities, leading to the development of different forms of cardiovascular diseases such as heart failure or diabetic cardiomyopathy. Although the causal relationship between the pathophysiological status of white adipose tissue (WAT) and cardiac lipotoxicity is still elusive, elevated lipolytic rate in WAT has been demonstrated to participate in the overall augmentation of plasma lipid levels, as observed in most of the patients suffering from heart failure. In the present overview, we discuss current therapeutic approaches, as well as new treatment options targeting lipolysis and cardiac lipid metabolism in different forms of heart failure and diabetic cardiomyopathy.

View Article and Find Full Text PDF

Background It is known that dietary intake of polyunsaturated fatty acids may improve cardiac function. However, relatively high daily doses are required to achieve sufficient cardiac concentrations of beneficial omega-3 fatty acids. The liver X receptor (LXR) is a nuclear hormone receptor and a crucial regulator of lipid homeostasis in mammals.

View Article and Find Full Text PDF

Aims: Heart failure (HF) is characterized by an overactivation of β-adrenergic signalling that directly contributes to impairment of myocardial function. Moreover, β-adrenergic overactivation induces adipose tissue lipolysis, which may further worsen the development of HF. Recently, we demonstrated that adipose tissue-specific deletion of adipose triglyceride lipase (ATGL) prevents pressure-mediated HF in mice.

View Article and Find Full Text PDF

Treatment of multiple myeloma (MM) aims at inducing cell apoptosis by surpassing the limited capacity of MM cells to cope with oxidative stress. MM cell survival may further be suppressed by limiting cellular cholesterol. Long-chain fatty acid analogs of the MEDICA series promote mitochondrial stress and inhibit cholesterol biosynthesis, thus prompting us to verify their efficacy and mode-of-action in suppressing MM cell survival, in comparison to bortezomib.

View Article and Find Full Text PDF

Mineralocorticoid receptor antagonists (MRAs) reduce morbidity and mortality in chronic heart failure. Novel nonsteroidal MRAs are currently developed and need to be pharmacologically characterized in comparison to classical steroidal MRAs. A mouse model of cardiac fibrosis induced by short-term isoproterenol injection was used to compare the nonsteroidal MRA finerenone and the steroidal MRA eplerenone in equi-efficient systemic MR blocking dosages.

View Article and Find Full Text PDF
Article Synopsis
  • Adipose tissue lipolysis increases during heart failure due to chronic adrenergic stimulation, yet its effects on heart function, particularly through adipose triglyceride lipase (ATGL), are not well understood.
  • Researchers used mice with a specific deletion of ATGL (atATGL-KO) and subjected them to an experiment simulating heart failure to examine differences in cardiac performance and lipid composition.
  • Results showed that atATGL-KO mice had less heart mass and were protected from systolic heart failure compared to normal mice, with notable preservation of lipid profiles, which suggests that inhibiting lipolysis via ATGL could mitigate heart failure-related lipid changes.
View Article and Find Full Text PDF

An important adaptive feature of heat acclimation (HA) is the induction of cross tolerance against novel stressors (HACT) Reprogramming of gene expression leading to enhanced innate cytoprotective features by attenuating damage and/or enhancing the response of "help" signals plays a pivotal role. Hypoxia-inducible factor-1α (HIF-1α), constitutively upregulated by HA (1 mo, 34°C), is a crucial transcription factor in this program, although its specific role is as yet unknown. By using a rat HA model, we studied the impact of disrupting HIF-1α transcriptional activation [HIF-1α:HIF-1β dimerization blockade by intraperitoneal acriflavine (4 mg/kg)] on its mitochondrial gene targets [phosphoinositide-dependent kinase-1 (PDK1), LON, and cyclooxygenase 4 (COX4) isoforms] in the HA rat heart.

View Article and Find Full Text PDF

B-Raf(V600E) activates MEK/MAPK signalling and acts as oncogenic driver of a variety of cancers, including melanoma, colorectal and papillary thyroid carcinoma. Specific B-Raf(V600E) kinase inhibitors (e.g.

View Article and Find Full Text PDF

Endurance exercise training induces substantial adaptive cardiac modifications such as left ventricular hypertrophy (LVH). Simultaneously to the development of LVH, adipose tissue (AT) lipolysis becomes elevated upon endurance training to cope with enhanced energy demands. In this study, we investigated the impact of adipose tissue lipolysis on the development of exercise-induced cardiac hypertrophy.

View Article and Find Full Text PDF

Obesity and type 2 diabetes (T2D) are associated with increased breast cancer incidence and mortality, whereas carbohydrate-restricted ketogenic diets ameliorate T2D and suppress breast cancer. These observations suggest an inherent efficacy of nonesterified long-chain fatty acids (LCFA) in suppressing T2D and breast tumorigenesis. In this study, we investigated novel antidiabetic MEDICA analogues consisting of methyl-substituted LCFA that are neither β-oxidized nor esterified to generate lipids, prompting interest in their potential efficacy as antitumor agents in the context of breast cancer.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2b2rrd1q5ik6pr9bo9mfh8elthbv2fjq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once