Publications by authors named "Elia Navarro-Masip"

Introduction: Nonalcoholic fatty liver disease (NAFLD), now termed metabolic dysfunction-associated steatotic liver disease (MASLD), is an escalating health concern linked to obesity and type 2 diabetes. Despite liver biopsy being the gold standard, its invasiveness underscores the need for noninvasive diagnostic methods.

Methods: A cross-sectional study was performed to assess MASLD using the noninvasive OWLiver® serum lipidomics test in a cohort of 117 patients with severe obesity undergoing bariatric surgery, comparing outcomes with liver biopsy.

View Article and Find Full Text PDF

Fruits are rich in bioactive compounds, such as (poly)phenols, and their intake is associated with health benefits, although recent animal studies have suggested that the photoperiod of consumption influences their properties. Fruit loss and waste are critical issues that can be reduced by obtaining functional fruit extracts. Therefore, the aim of this study was to obtain phenolic-enriched extracts from eight seasonal fruits that can modulate blood biochemical parameters and to investigate whether their effects depend on the photoperiod of consumption.

View Article and Find Full Text PDF

Purpose: Non-alcoholic fatty liver disease (NAFLD), now termed metabolic dysfunction-associated fatty liver disease (MAFLD), is a growing health concern associated with obesity and type 2 diabetes. Bariatric surgery offers potential benefits, but its impact on MAFLD remains incompletely understood, with scarce long-term follow-up prospective studies. Moreover, being liver biopsy the gold standard for liver condition measurement, the need for non-invasive techniques that allow the assessment of MAFLD development after bariatric surgery is imperative.

View Article and Find Full Text PDF

Scope: Variations in photoperiod patterns drive metabolic adaptations in mammals, involving important changes in body weight and adiposity. Moreover, (poly)phenols can help heterotrophs adopt metabolic adaptations to face the upcoming environmental conditions. Particularly, proanthocyanidins from grape-seeds show photoperiod-dependent effects on different metabolic parameters.

View Article and Find Full Text PDF

Scope: The beneficial health effects of (poly)phenol-rich foods such as red grapes mainly depend on both the type and concentration of (poly)phenols. Since fruit (poly)phenol content is influenced by growing conditions, the study examines the seasonal effects of red grapes (Vitis vinifera L.), grown under various cultivation conditions, on metabolic markers of adipose tissue in healthy rats.

View Article and Find Full Text PDF

Seasonal rhythms drive metabolic adaptations that influence body weight and adiposity. Adipose tissue is a key regulator of energy homeostasis in the organism, and its healthiness is needed to prevent the major consequences of overweight and obesity. In this context, supplementation with proanthocyanidins has been postulated as a potential strategy to prevent the alterations caused by obesity.

View Article and Find Full Text PDF

Energy homeostasis and metabolism in mammals are strongly influenced by seasonal changes. Variations in photoperiod patterns drive adaptations in body weight and adiposity, reflecting changes in the regulation of food intake and energy expenditure. Humans also show distinct patterns of energy balance depending on the season, being more susceptible to gaining weight during a specific time of the year.

View Article and Find Full Text PDF

Consumption of grape seed proanthocyanidin extract (GSPE) has beneficial effects on the functionality of white adipose tissue (WAT). However, although WAT metabolism shows a clear diurnal rhythm, whether GSPE consumption could affect WAT rhythmicity in a time-dependent manner has not been studied. Ninety-six male Fischer rats were fed standard (STD, two groups) or cafeteria (CAF, four groups) diet for 9 weeks ( = 16 each group).

View Article and Find Full Text PDF

Background: Grape-seed proanthocyanidin extract (GSPE) improve white adipose tissue (WAT) expansion during diet-induced obesity. However, because adipose metabolism is synchronized by circadian rhythms, it is plausible to speculate that the bioactivity of dietary proanthocyanidins could be influenced by the time-of-day in which they are consumed. Therefore, the aim of the present study was to determine the interaction between zeitgeber time (ZT) and GSPE consumption on the functionality of WAT in rats with diet-induced obesity.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease in the world. Obesity, insulin resistance, and dyslipidemia are multifactorial risk factors strongly associated with NAFLD/NASH. Here, a specific combination of metabolic cofactors (a multi-ingredient; MI) containing precursors of glutathione (GSH) and nicotinamide adenine dinucleotide (NAD) (betaine, N-acetyl-cysteine, L-carnitine and nicotinamide riboside) was evaluated as effective treatment for the NAFLD/NASH pathophysiology.

View Article and Find Full Text PDF