Publications by authors named "Eli Keshet"

The breakdown of the blood-brain barrier (BBB) is a critical event in the development of secondary brain injury after stroke. Among the cellular hallmarks in the acute phase after stroke are a downregulation of tight-junction molecules and the loss of microvascular pericyte coverage and endothelial sealing. Thus, a rapid repair of blood vessel integrity and re-stabilization of the BBB is considered an important strategy to reduce secondary brain damage.

View Article and Find Full Text PDF

Glioblastoma stem cells (GSCs) reside close to blood vessels (BVs) but vascular cues contributing to GSC stemness and the nature of GSC-BVs cross talk are not fully understood. Here, we dissected vascular cues influencing GSC gene expression and function to perfusion-based vascular cues, as well as to those requiring direct GSC-endothelial cell (EC) contacts. In light of our previous finding that perivascular tumor cells are metabolically different from tumor cells residing further downstream, cancer cells residing within a narrow, < 60 µm wide perivascular niche were isolated and confirmed to possess a superior tumor-initiation potential compared with those residing further downstream.

View Article and Find Full Text PDF

Differential exposure of tumor cells to microenvironmental cues greatly impacts cell phenotypes, raising a need for position based sorting of tumor cells amenable to multiple OMICs and functional analyses. One such key determinant of tumor heterogeneity in solid tumors is its vasculature. Proximity to blood vessels (BVs) profoundly affects tumor cell phenotypes due to differential availability of oxygen, gradient exposure to blood-borne substances and inputs by angiocrine factors.

View Article and Find Full Text PDF

Blood vessels (BVs) are considered an integral component of neural stem cells (NSCs) niches. NSCs in the dentate gyrus (DG(have enigmatic elaborated apical cellular processes that are associated with BVs. Whether this contact serves as a mechanism for delivering circulating molecules is not known.

View Article and Find Full Text PDF

Multiple insults to the brain lead to neuronal cell death, thus raising the question to what extent can lost neurons be replenished by adult neurogenesis. Here we focused on the hippocampus and especially the dentate gyrus (DG), a vulnerable brain region and one of the two sites where adult neuronal stem cells (NSCs) reside. While adult hippocampal neurogenesis was extensively studied with regard to its contribution to cognitive enhancement, we focused on their underestimated capability to repair a massively injured, nonfunctional DG.

View Article and Find Full Text PDF

Differential exposure of tumor cells to blood-borne and angiocrine factors results in diverse metabolic microenvironments conducive for non-genetic tumor cell diversification. Here, we harnessed a methodology for retrospective sorting of fully functional, stroma-free cancer cells solely on the basis of their relative distance from blood vessels (BVs) to unveil the whole spectrum of genes, metabolites, and biological traits impacted by BV proximity. In both grafted mouse tumors and natural human glioblastoma (GBM), mTOR activity was confined to few cell layers from the nearest perfused vessel.

View Article and Find Full Text PDF
Article Synopsis
  • A study has identified vascular endothelial growth factor (VEGF) as a new trigger for increasing the production of erythropoietin (Epo), which helps produce red blood cells, even when there isn’t a shortage of oxygen or anemia present.
  • This process occurs mainly in specific cells found in the kidney, liver, and spleen, providing a new understanding of how Epo is regulated in the body.
  • Importantly, blocking a specific signaling pathway (PDGFRβ) was found to stop VEGF from inducing Epo production, suggesting potential therapeutic targets for conditions like chronic kidney disease.
View Article and Find Full Text PDF

Neurogenic roles of microglia (MG) are thought to include an active role in adult hippocampal neurogenesis in addition to their established roles in pruning surplus dendrites and clearing dead neuroblasts. However, identification of such a role and its delineation in the neurogenic cascade is yet to be established. Using diphtheria toxin-aided MG ablation, we show that MG reduction in the DG-the site where neuronal stem cells (NSCs) reside-is sufficient to impede overall hippocampal neurogenesis due to reduced survival of newly formed neuroblasts.

View Article and Find Full Text PDF

The gene encoding the kinase Mnk2 (MKNK2) is alternatively spliced to produce two isoforms-Mnk2a and Mnk2b. We previously showed that Mnk2a is downregulated in several types of cancer and acts as a tumor suppressor by activation of the p38-MAPK stress pathway, inducing apoptosis. Moreover, Mnk2a overexpression suppressed Ras-induced transformation in culture and in vivo.

View Article and Find Full Text PDF

The role of phosphoglycerate dehydrogenase (PHGDH), a key enzyme of the serine synthesis pathway (SSP), in endothelial cells (ECs) remains poorly characterized. We report that mouse neonates with EC-specific PHGDH deficiency suffer lethal vascular defects within days of gene inactivation, due to reduced EC proliferation and survival. In addition to nucleotide synthesis impairment, PHGDH knockdown (PHGDH) caused oxidative stress, due not only to decreased glutathione and NADPH synthesis but also to mitochondrial dysfunction.

View Article and Find Full Text PDF

Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1.

View Article and Find Full Text PDF

Preexisting diabetes is a risk factor for the development of multiple types of cancer. Additionally, diabetic patients face a poorer prognosis when diagnosed with cancer. To gain insight into the effects of hyperglycemia, a hallmark of diabetes, on tumor growth and metastatic progression, we combined mouse models of cancer and hyperglycemia.

View Article and Find Full Text PDF

Aims/hypothesis: Endothelial-endocrine cell interactions and vascular endothelial growth factor (VEGF)-A signalling are deemed essential for maternal islet vascularisation, glucose control and beta cell expansion during mouse pregnancy. The aim of this study was to assess whether pregnancy-associated beta cell expansion was affected under conditions of islet hypovascularisation.

Methods: Soluble fms-like tyrosine kinase 1 (sFLT1), a VEGF-A decoy receptor, was conditionally overexpressed in maternal mouse beta cells from 1.

View Article and Find Full Text PDF

Several factors are known to enhance adult hippocampal neurogenesis but a factor capable of inducing a long-lasting neurogenic enhancement that attenuates age-related neurogenic decay has not been described. Here, we studied hippocampal neurogenesis following conditional VEGF induction in the adult brain and showed that a short episode of VEGF exposure withdrawn shortly after the generation of durable new vessels (but not under conditions where newly made vessels failed to persist) is sufficient for neurogenesis to proceed at a markedly elevated level for many months later. Continual neurogenic increase over several months was not accompanied by accelerated exhaustion of the neuronal stem cell (NSC) reserve, thereby allowing neurogenesis to proceed at a markedly elevated rate also in old mice.

View Article and Find Full Text PDF

A fundamental issue in organogenesis is how dichotomous fate decisions are made securing proper allocation of multipotent progenitors to their respective descendants. Previous lineage tracing analyses showing Isl1/VEGFR2 cardiac progenitors in the second heart field give rise to both endocardium and myocardium suggest VEGF plays a role in this fate decision, conceivably promoting an endocardial fate. Isl1 multipotent progenitors and lineage-committed descendants thereof were visualized and quantified within their transition zone in the outflow tract.

View Article and Find Full Text PDF

Blood vessels (BVs) not only serve as conduits for oxygen and nutrients but may also fulfill perfusion-independent functions. A growing body of data suggests that blood vessels are an integral component of stem cell niches, including stem cell niches in the adult brain. This review summarizes in vivo studies supporting the contention that blood vessels may indeed control function of neuronal stem cells (NSCs) residing in the two major neurogenic niches of the adult brain, namely the sub-ventricular zone and the hippocampus.

View Article and Find Full Text PDF

Premature birth is a major risk factor for multiple brain pathologies, notably periventricular leukomalacia (PVL), which is distinguished by bilateral necrosis of neural tissue around the ventricles and a sequela of neurological disturbances. The 2 hallmarks of brain pathologies of prematurity are a restricted gestational window of vulnerability and confinement of injury to a specific cerebral region. Here, we examined the proposition that both of these features are determined by the state of blood vessel immaturity.

View Article and Find Full Text PDF

Rationale: Rescuing adverse myocardial remodeling is an unmet clinical goal and, correspondingly, pharmacological means for its intended reversal are urgently needed.

Objectives: To harness a newly-developed experimental model recapitulating progressive heart failure development for the discovery of new drugs capable of reversing adverse remodeling.

Methods And Results: A VEGF-based conditional transgenic system was employed in which an induced perfusion deficit and a resultant compromised cardiac function lead to progressive remodeling and eventually heart failure.

View Article and Find Full Text PDF

Adult neovascularization relies on the recruitment of monocytes to the target organ or tumor and functioning therein as a paracrine accessory. The exact origins of the recruited monocytes and the mechanisms underlying their plasticity remain unclear. Using a VEGF-based transgenic system in which genetically tagged monocytes are conditionally summoned to the liver as part of a VEGF-initiated angiogenic program, we show that these recruited cells are derived from the abundant pool of circulating Ly6C(hi) monocytes.

View Article and Find Full Text PDF

Aims/hypothesis: Vascular endothelial growth factor (VEGF) has been recognised by loss-of-function experiments as a pleiotropic factor with importance in embryonic pancreas development and postnatal beta cell function. Chronic, nonconditional overexpression of VEGF-A has a deleterious effect on beta cell development and function. We report, for the first time, a conditional gain-of-function study to evaluate the effect of transient VEGF-A overexpression by adult pancreatic beta cells on islet vasculature and beta cell proliferation and survival, under both normal physiological and injury conditions.

View Article and Find Full Text PDF

It is generally accepted that vascularization and oxygenation of pancreatic islets are essential for the maintenance of an optimal β-cell mass and function and that signaling by vascular endothelial growth factor (VEGF) is crucial for pancreas development, insulin gene expression/secretion, and (compensatory) β-cell proliferation. A novel mouse model was designed to allow conditional production of human sFlt1 by β-cells in order to trap VEGF and study the effect of time-dependent inhibition of VEGF signaling on adult β-cell fate and metabolism. Secretion of sFlt1 by adult β-cells resulted in a rapid regression of blood vessels and hypoxia within the islets.

View Article and Find Full Text PDF

Vascular endothelial growth factor-A (abbreviated throughout this review as VEGF) is mostly known for its angiogenic activity, for its activity as a vascular permeability factor, and for its vascular survival activity [1]. There is a growing body of evidence, however, that VEGF fulfills additional less 'traditional' functions in multiple organs, both during development, as well as homeostatic functions in fully developed organs. This review focuses on the multiple roles of VEGF in the adult brain and is less concerned with the roles played by VEGF during brain development, functions described elsewhere in this review series.

View Article and Find Full Text PDF

Objective: Proangiogenic therapy is a promising avenue for the treatment for chronic heart failure and a potentially powerful modality for reversing adverse cardiac remodeling. There is a concern, however, that adverse remodeling might enter an irreversible stage, and become refractory to treatments. The present study aims to determine whether neovascularization therapy is feasible at end stage heart failure and its capacity to reverse adverse cardiac remodeling during progressive disease stages.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is the angiogenic factor promoting and orchestrating most, if not all, processes of neovascularization taking place in the embryo and the adult. VEGF is also required to sustain newly formed vessels and plays additional multiple roles in the maintenance and function of certain mature vascular beds. Correspondingly, perturbations in VEGF signaling may impact organ homeostasis in multiple ways.

View Article and Find Full Text PDF