Erythropoietin (EPO) has neuroprotective effects in central nervous system injury models. In clinical trials EPO has shown beneficial effects in traumatic brain injury (TBI) as well as in ischemic stroke. We have previously shown that EPO has short-term effects on astrocyte glutamatergic signaling in vitro and that administration of EPO after experimental TBI decreases early cytotoxic brain edema and preserves structural and functional properties of the blood-brain barrier.
View Article and Find Full Text PDFErythropoietin (EPO) has neuroprotective effects in multiple central nervous system (CNS) injury models; however EPO's effects on traumatic brain edema are elusive. To explore EPO as an intervention in traumatic brain edema, male Sprague-Dawley (SD) rats were subjected to blunt, controlled traumatic brain injury (TBI). Animals were randomized to EPO 5000 IU/kg or saline (control group) intraperitoneally within 30 min after trauma and once daily for 4 consecutive days.
View Article and Find Full Text PDFScand J Trauma Resusc Emerg Med
July 2017
Background: Accidental hypothermia with cardiac arrest represents a challenge for pre-hospital rescuers as well as in-hospital staff. For pre-hospital personnel, the main focus is to get the patient to the correct destination without unnecessary delay. For in-hospital personnel early information is vital to assess the possibility for resuscitation with extracorporeal re-warming.
View Article and Find Full Text PDFMigraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na(+)/K(+)-ATPase).
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major contributor to mortality and morbidity. The pathophysiology involves development of brain edema. Therapeutic options are limited as the mechanisms are not fully understood.
View Article and Find Full Text PDFGlutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na(+) co-transporters. This transport is driven by the transmembrane Na(+) gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile.
View Article and Find Full Text PDFAstrocytes express potassium and water channels to support dynamic regulation of potassium homeostasis. Potassium kinetics can be modulated by aquaporin-4 (AQP4), the essential water channel for astrocyte water permeability regulation. We investigated whether extracellular potassium ([K(+)](o)) can regulate astrocyte water permeability and the mechanisms of such an effect.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2009
Disturbed brain water homeostasis with swelling of astroglial cells is a common complication in stroke, trauma, and meningitis and is considered to be a major cause of permanent brain damage. Astroglial cells possess the water channel aquaporin 4 (AQP4). Recent studies from our laboratory have shown that glutamate, acting on group I metabotropic glutamate receptors (mGluRs), increases the permeability of astrocyte AQP4, which, in situations of hypoxia-ischemia, will increase astrocyte water uptake.
View Article and Find Full Text PDFAstrocytes play a key role for maintenance of brain water homeostasis, but little is known about mechanisms of short-term regulation of astrocyte water permeability. Here, we report that glutamate increases astrocyte water permeability and that the molecular target for this effect is the aquaporin-4 (AQP4) serine 111 residue, which is in a strategic position for control of the water channel gating. The glutamate effect involves activation of group I metabotropic glutamate receptors (mGluR), intracellular calcium release, and activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and nitric oxide synthase (NOS).
View Article and Find Full Text PDF