This study investigated the impact of a support matrix and active group on the support to the nutritional properties of orange juice after juice clarification. Pectinase was immobilized on chitosan and aminated silica supports, activated with genipin or glutaraldehyde, and applied for juice clarification. The effects on various juice properties, including reducing sugars, total soluble solids, vitamin C, and phenolic compounds, juice color, and pH, were evaluated.
View Article and Find Full Text PDFThis study aimed to modify the porosity of chitosan beads using NaCO as a porogen agent and to crosslink them with genipin for the immobilization of β-galactosidase from Aspergillus oryzae. Immobilization was performed under four different pH conditions (4.5, 6.
View Article and Find Full Text PDFCarbohydr Polym
September 2022
In this work, we studied the development of a biocomposite formulated with alginate and gelatin, crosslinked with genipin for application as support for β-galactosidase immobilization. Also, the biocomposites with the immobilized enzyme were characterized by thermal analyses and SAXS (size, density, and interconnectivity of alginate rods) for a detailed analysis of the microstructure, as well as the thermal and operational stabilities of the enzyme. The structural modifications of the biocomposite determined by SAXS demonstrate that the addition of both genipin and enzyme produced a significant reduction in size and density of the Ca(II)-alginate rods.
View Article and Find Full Text PDFA new support for the immobilization of β-d-galactosidase from Kluyveromyces lactis was developed, consisting of mesoporous silica/titania with a chitosan coating. This support presents a high available surface area and adequate pore size for optimizing the immobilization efficiency of the enzyme and, furthermore, maintaining its activity. The obtained supported biocatalyst was applied in enzyme hydrolytic activity tests with o-NPG, showing high activity 1223 Ug, excellent efficiency (74%), and activity recovery (54%).
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.