Aim: To characterize vestibular recovery in a mouse model of unilateral labyrinthotomy under local AAT and dexamethasone treatment.
Background: Alpha1-antitrypsin (AAT) is a circulating tissue-protective molecule that rises during inflammatory conditions and promotes inflammatory resolution. Its local concentration in human perilymph inversely correlates with the severity of inner ear dysfunction; concomitantly, mice that overexpress AAT and undergo inner ear trauma rapidly restore vestibular function.
Background: Most tympanic membrane (TM) perforations heal spontaneously, but 10%-20% remain chronic and might lead to impaired hearing and recurrent middle ear infections. Alpha1-antitrypsin (AAT) is a circulating tissue-protective protein that is elevated under inflammatory conditions and is currently indicated for genetic AAT deficiency. Recently, AAT has been shown to promote tissue remodeling and inflammatory resolution.
View Article and Find Full Text PDFα1-Antitrypsin (AAT), an acute-phase reactant not unsimilar to C-reactive protein (CRP), is a serine protease inhibitor that harbors tissue-protective and immunomodulatory attributes. Its concentrations appropriately increase during conditions of extensive tissue injury, and it induces immune tolerance, in part, by inhibiting the enzymatic activity of the inflammatory serine protease, proteinase 3 (PR3). Typically administered to patients with genetic AAT deficiency, AAT treatment was recently shown to improve outcomes in patients with steroid-refractory graft-versus-host disease (GVHD).
View Article and Find Full Text PDFWound healing requires a non-compromising combination of inflammatory and anti-inflammatory processes. Human α1-antitrypsin (hAAT), a circulating glycoprotein that rises during acute-phase responses and during healthy pregnancies, is tissue-protective and tolerance-inducing; although anti-inflammatory, hAAT enhances revascularization. hAAT blocks tissue-degrading enzymes, including neutrophil elastase; it is, therefore, unclear how wound healing might improve under hAAT-rich conditions.
View Article and Find Full Text PDFα1-antitrypsin (AAT) is an acute-phase protein that functions as an inhibitor of serine proteases, such as neutrophil elastase. A significant body of evidence shows that AAT has a pivotal role in protecting tissues from neutrophil-induced damage, preserving endothelial function, and improving outcomes of cardiovascular and cerebrovascular diseases, though the mechanism of its activity is not fully elucidated. In terms of several significant anti-inflammatory and immunomodulatory properties, AAT's capacity to inhibit elastase has been determined to be non-essential.
View Article and Find Full Text PDFHuman α1-antitrypsin (hAAT) has two distinguishing functions: anti-protease activity and regulation of the immune system. In the present study we hypothesized that those two protein functions are mediated by different structural domains on the hAAT surface. Indeed, such biologically active immunoregulatory sites (not associated with canonical anti-protease activity) on the surface of hAAT were identified by in silico methods.
View Article and Find Full Text PDFSkeletal muscle insulin resistance is a main defect in type 2 diabetes (T2D), which is associated with impaired function and content of glucose transporter type 4 (GLUT4). GLUT4 overexpression in skeletal muscle tissue can improve glucose homeostasis. Therefore, we created an engineered muscle construct (EMC) composed of GLUT4-overexpressing (OEG4) cells.
View Article and Find Full Text PDFDendritic cells (DCs) mature upon an inflammatory trigger. However, an inflammatory trigger can lead to a semi-mature phenotype, allowing DCs to evoke tolerance and expedite the resolution of inflammation. This duality likely involves context-dependent modulation of inflammatory signaling.
View Article and Find Full Text PDFRationale: Mutation in the alpha1 antitrypsin (AAT) gene leads to low circulating levels of AAT, which is associated with several disease processes including pulmonary emphysema. The standard of care relies on substitution with plasma-purified AAT. We studied a novel approach to obtain sustained therapeutic levels of circulating AAT using nonviral in vivo electroporation-mediated gene transfer to the liver.
View Article and Find Full Text PDFTransient vestibular organ deafferentation, such that is caused by traumatic tissue injury, is presently addressed by corticosteroid therapy. However, restoration of neurophysiological properties is rarely achieved. Here, it was hypothesized that the tissue-protective attributes of α1-antityrpsin (AAT) may promote restoration of neuronal function.
View Article and Find Full Text PDFAlpha1-antitrypsin (AAT) is a serum protease inhibitor that rises during inflammation and healthy pregnancies. Plasma-derived AAT, indicated for genetic AAT deficiency, is presently being explored for additional medical indications. Unlike corticosteroids, some anti-inflammatory activities of AAT involve NF-κB-dependent outcomes, e.
View Article and Find Full Text PDFPrimarily known as an elastase inhibitor, human alpha1-antitrypsin also exerts anti-inflammatory and immunomodulatory effects, both in vitro and in vivo. While the anti-protease mechanism of alpha1-antitrypsin is attributed to a particular protein domain coined the reactive center loop, anti-inflammatory and immunomodulatory loci within the molecule remain to be identified. In the present study, directed evolution and back-to-consensus algorithms were applied to human alpha1-antitrypsin.
View Article and Find Full Text PDFObjectives: To determine the levels of endogenous α1-antitrypsin in the perilymph of patients undergoing cochlear implant (CI), and its reverse association with the severity of hearing loss.
Study Design: Retrospective study.
Setting: Tertiary care university hospital.
Mitochondrial turnover is required for proper cellular function. Both mitochondrial biogenesis and mitophagy are impaired in several degenerative and age-related diseases. The search for mitophagy activators recently emerged as a new therapeutical approach; however, there is a lack in suitable tools to follow mitochondrial turnover in a high-throughput manner.
View Article and Find Full Text PDFImmunosuppressive drugs are an inherent component of hematopoietic stem cell transplantation (HSCT) for the prevention of acute graft-versus-host disease (GVHD). Circulating α1-antitrypsin (AAT), a serine-protease inhibitor produced predominantly by hepatocytes that rises during acute phase responses, is lost in patient's stool due to gastrointestinal GVHD, and its augmentation has been found to attenuate GVHD. Here we explored the effect of immunosuppressive drugs on hepatocyte production of AAT and intestinal epithelial gap repair.
View Article and Find Full Text PDFOur aim was to assess the efficacy, safety, and tolerability of alpha-1 antitrypsin (AAT) as a therapeutic modality for β-cell preservation in patients with recent-onset type 1 diabetes. Seventy type 1 diabetes patients (37 males; mean age 13.1 ± 4.
View Article and Find Full Text PDFSkin flaps are routinely used in reconstructive surgery yet remain susceptible to ischemia and necrosis. Distant flaps require lengthy time to detach causing patient discomfort. Human α1-antitrypsin (hAAT) is a clinically available serum glycoprotein.
View Article and Find Full Text PDFGenetic aberrations in the toll-like receptor (TLR)3 pathway are associated with increased susceptibility to herpes simplex virus (HSV) infections. Leucine-rich repeat and PYD-containing protein (NLRP)12 is a component of the inflammasome apparatus, which is critical to an immediate innate inflammatory response. Aberrations in NLRP12 have been shown to mediate auto-inflammation.
View Article and Find Full Text PDFHuman α1-antitrypsin (hAAT) is a circulating anti-inflammatory serine-protease inhibitor that rises during acute phase responses. , hAAT reduces bacterial load, without directly inhibiting bacterial growth. In conditions of excess nitric-oxide (NO), hAAT undergoes S-nitrosylation (S-NO-hAAT) and gains antibacterial capacity.
View Article and Find Full Text PDFAlpha-1 antitrypsin deficiency (AATD) is a genetic disorder which most commonly manifests as pulmonary emphysema. Accordingly, alpha-1 antitrypsin (AAT) augmentation therapy aims to reduce the progression of emphysema, as achieved by life-long weekly slow-drip infusions of plasma-derived affinity-purified human AAT. However, not all AATD patients will receive this therapy, due to either lack of medical coverage or low patient compliance.
View Article and Find Full Text PDFIntroduction: Human α1-antitrypsin (hAAT) is a 394-amino acid long anti-inflammatory, neutrophil elastase inhibitor, which binds elastase a sequence-specific molecular protrusion (reactive center loop, RCL; positions 357-366). hAAT formulations that lack protease inhibition were shown to maintain their anti-inflammatory activities, suggesting that some attributes of the molecule may reside in extra-RCL segments. Here, we compare the protease-inhibitory and anti-inflammatory profiles of an extra-RCL mutation (cys232pro) and two intra-RCL mutations (pro357cys, pro357ala), to naïve [wild-type (WT)] recombinant hAAT, , and .
View Article and Find Full Text PDFCorticosteroid resistance after acute graft-versus-host disease (SR-aGVHD) results in high morbidity and mortality after allogeneic hematopoietic cell transplantation. Current immunosuppressive therapies for SR-aGVHD provide marginal effectiveness because of poor response or excessive toxicity, primarily from infection. α-Antitrypsin (AAT), a naturally abundant serine protease inhibitor, is capable of suppressing experimental GVHD by downmodulating inflammation and increasing ratios of regulatory (T) to effector T cells (Ts).
View Article and Find Full Text PDFα1-antitrypsin (AAT), a circulating glycoprotein that rises during acute phase responses and healthy pregnancies, exhibits immunomodulatory properties in several T-cell-dependent immune pathologies. However, AAT does not directly interfere with T-cell responses; instead, it facilitates polarization of macrophages and dendritic cells towards M2-like and tolerogenic cells, respectively. AAT also allows NK cell responses against tumor cells, while attenuating DC-dependent induction of autoimmune NK cell activities.
View Article and Find Full Text PDFLife-long weekly infusions of human α1-antitrypsin (hAAT) are currently administered as augmentation therapy for patients with genetic AAT deficiency (AATD). Several recent clinical trials attempt to extend hAAT therapy to conditions outside AATD, including type 1 diabetes. Since the endpoint for AATD is primarily the reduction of risk for pulmonary emphysema, the present study explores hAAT dose protocols and routes of administration in attempt to optimize hAAT therapy for islet-related injury.
View Article and Find Full Text PDF