Publications by authors named "Eli Brenner"

Numerous devices are being developed to assist visually impaired and blind individuals in performing everyday tasks such as reaching out to grasp objects. Considering that the size, weight, and cost of assistive devices significantly impact their acceptance, it would be useful to know how effective various types of guiding information can be. As an initial exploration of this issue, we conducted four studies in which participants with normal vision were visually guided toward targets.

View Article and Find Full Text PDF

It is reasonable to assume that where people look in the world is largely determined by what they are doing. The reasoning is that the activity determines where it is useful to look at each moment in time. Assuming that it is vital to accurately judge the positions of the steps when navigating a staircase, it is surprising that people differ a lot in the extent to which they look at the steps.

View Article and Find Full Text PDF

When interacting with the environment, humans typically shift their gaze to where information is to be found that is useful for the upcoming action. With increasing age, people become slower both in processing sensory information and in performing their movements. One way to compensate for this slowing down could be to rely more on predictive strategies.

View Article and Find Full Text PDF

To read this article, you have to constantly direct your gaze at the words on the page. If you go for a run instead, your gaze will be less constrained, so many factors could influence where you look. We show that you are likely to spend less time looking at the path just in front of you when running alone than when running with someone else, presumably because the presence of the other runner makes foot placement more critical.

View Article and Find Full Text PDF

Behavior in controlled laboratory studies is not always representative of what people do in daily life. This has prompted a recent shift toward conducting studies in natural settings. We wondered whether expectations raised by how the task is presented should also be considered.

View Article and Find Full Text PDF

Background: Eye tracking is a promising method for objectively assessing functional visual capabilities, but its suitability remains unclear when assessing the vision of people with vision impairment. In particular, accurate eye tracking typically relies on a stable and reliable image of the pupil and cornea, which may be compromised by abnormalities associated with vision impairment (e.g.

View Article and Find Full Text PDF

Objects in one's environment do not always move at a constant velocity but often accelerate or decelerate. People are very poor at visually judging acceleration and normally make systematic errors when trying to intercept accelerating objects. If the acceleration is perpendicular to the direction of motion, it gives rise to a curved path.

View Article and Find Full Text PDF

Presenting more items within a space makes the space look and feel bigger. Presenting more tones within a time interval makes the interval seem longer. Does presenting more items also make a time interval seem longer? Does it matter what these items are? A series of 2-4 images were presented sequentially on a screen.

View Article and Find Full Text PDF

People generally look at a target when they want to reach for it. Doing so presumably helps them continuously update their judgments about the target's position and motion. But not looking at their hand does not prevent people from updating judgments about its position on the basis of visual information, because people do respond to experimental perturbations of visual information about the position of their hand.

View Article and Find Full Text PDF

People rely upon sensory information in the environment to guide their actions. Ongoing goal-directed arm movements are constantly adjusted to the latest estimate of both the target and hand's positions. Does the continuous guidance of ongoing arm movements also consider the latest visual information of the position of obstacles in the surrounding? To find out, we asked participants to slide their finger across a screen to intercept a laterally moving virtual target while moving through a gap that was created by two virtual circular obstacles.

View Article and Find Full Text PDF

The laws of physics and mathematics describe the world we live in as internally consistent. As these rules provide a very effective description, and our interaction with the world is also very effective, it seems self-evident that our perception follows these laws. As a result, when trying to explain imperfections in perception, we tend to impose consistency and introduce concepts such as deformations of visual space.

View Article and Find Full Text PDF

Visual feedback normally helps guide movements to their goal. When moving one's hand, such guidance has to deal with a sensorimotor delay of about 100 ms. When moving a cursor, it also has to deal with a delay of tens of milliseconds that arises between the hand moving the mouse and the cursor moving on the screen.

View Article and Find Full Text PDF

We constantly make choices about how to interact with objects in the environment. Do we immediately consider changes in our posture when making such choices? To find out, we examined whether motion in the background, which is known to influence the trajectory of goal-directed hand movements, influences participants' choices when suddenly faced with two options. The participants' task was to tap on as many sequentially presented targets as possible within 90 seconds.

View Article and Find Full Text PDF

Many activities in daily life do not impose strict requirements on gaze. We investigated gaze when walking up and down staircases within one's own house. We anticipated that using a variety of staircases in different environments and not informing participants that stair climbing was the focus of investigation might provide a description of gaze behavior that is closer to that used in our daily life than doing so under circumstances in which the focus is explicitly and exclusively directed at the stairs.

View Article and Find Full Text PDF

Reaching movements are guided by estimates of the target object's location. Since the precision of instantaneous estimates is limited, one might accumulate visual information over time. However, if the object is not stationary, accumulating information can bias the estimate.

View Article and Find Full Text PDF

When intercepting moving targets, people perform slightly better if they follow their natural tendency to pursue the target with their eyes. Is this because the velocity is judged more precisely when pursuing the target? To find out, we compared how well people could determine which of two sequentially presented moving bars was moving faster. There was always also a static bar on the screen.

View Article and Find Full Text PDF

When making a goal-directed movement towards a target, our hand follows abrupt background motion. This response resembles that of a shift in the target's position. Does background motion simply change the position towards which the movement is guided? If so, the response to background motion should resemble the response to a target displacement.

View Article and Find Full Text PDF

Throughout the day, people constantly make choices such as where to direct their gaze or place their foot. When making such movement choices, there are usually multiple acceptable options, although some are more advantageous than others. How much time does it take to make such choices and to what extent is the most advantageous option chosen from the available alternatives? To find out, we asked participants to collect points by tapping on any of several targets with their index finger.

View Article and Find Full Text PDF

Hand movements are pulled in the direction of motion near their planned endpoints. Is this an automatic response to motion signals near those positions, or do we consider what is moving? To find out, we asked participants to hit a target that moved rightward across a patterned surface when it reached an interception zone that was indicated by a circle. The circle was initially at the center of a square.

View Article and Find Full Text PDF

It is known that judgments about objects' distances are influenced by familiar size: a soccer ball looks farther away than a tennis ball if their images are equally large on the retina. We here investigate whether familiar size also influences judgments about the size of images of objects that are presented side-by-side on a computer screen. Sixty-three participants indicated which of two images appeared larger on the screen in a 2-alternative forced-choice discrimination task.

View Article and Find Full Text PDF

People adjust their on-going movements to changes in the environment. It takes about 100 ms to respond to an abrupt change in a target's position. Does the vigour of such responses depend on the extent to which responding is beneficial? We asked participants to tap on targets that jumped laterally once their finger started to move.

View Article and Find Full Text PDF

We expect a cursor to move upwards when we push our computer mouse away. Do we expect it to move upwards on the screen, upwards with respect to our body, or upwards with respect to gravity? To find out, we asked participants to perform a simple task that involved guiding a cursor with a mouse. It took participants that were sitting upright longer to reach targets with the cursor if the screen was tilted, so not only directions on the screen are relevant.

View Article and Find Full Text PDF

When making goal-directed movements toward a target, our hand deviates from its path in the direction of sudden background motion. We propose that this manual following response arises because ongoing movements are constantly guided toward the planned movement endpoint. Such guidance is needed to compensate for modest, unexpected self-motion.

View Article and Find Full Text PDF

Everyday movements are guided by objects' positions relative to other items in the scene (allocentric information) as well as by objects' positions relative to oneself (egocentric information). Allocentric information can guide movements to the remembered positions of hidden objects, but is it also used when the object remains visible? To stimulate the use of allocentric information, the of the participant's finger controlled the of a cursor that they used to intercept moving targets, so there was no one-to-one mapping between egocentric positions of the hand and cursor. We evaluated whether participants relied on allocentric information by shifting all task-relevant items simultaneously leaving their allocentric relationships unchanged.

View Article and Find Full Text PDF