One of the primary mechanisms to vary one's vocal frequency is through vocal fold length changes. As stress and deformation are linked to each other, it is hypothesized that the anisotropy in the biomechanical properties of the vocal fold tissue would affect the phonation characteristics. A biomechanical model of vibrational frequency rise during vocal fold elongation is developed which combines an advanced biomechanical characterization protocol of the vocal fold tissue with continuum beam models.
View Article and Find Full Text PDFBiomech Model Mechanobiol
June 2013
The vocal folds are known to be mechanically anisotropic due to the microstructural arrangement of fibrous proteins such as collagen and elastin in the lamina propria. Even though this has been known for many years, the biomechanical anisotropic properties have rarely been experimentally studied. We propose that an indentation procedure can be used with uniaxial tension in order to obtain an estimate of the biomechanical anisotropy within a single specimen.
View Article and Find Full Text PDFBiotechnol Appl Biochem
February 2012
Porogen leaching is a widely used and simple technique for the creation of porous scaffolds in tissue engineering. Sodium chloride (NaCl) is the most commonly used porogen, but the current grinding and sieving methods generate salt particles with huge size variations and cannot generate porogens in the submicron size range. We have developed a facile method based on the principles of crystallization to precisely control salt crystal sizes down to a few microns within a narrow size distribution.
View Article and Find Full Text PDF