Increased impetus on the application of nano-fertilizers to improve sustainable food production warrants understanding of nanophytotoxicity and its underlying mechanisms before its application could be fully realized. In this study, we evaluated the potential particle size-dependent effects of soil-applied copper oxide nanoparticles (nCuO) on crop yield and quality attributes (photosynthetic pigments, seed yield and nutrient quality, seed protein, and seed oil), including root and seed Cu bioaccumulation and a suite of oxidative stress biomarkers, in soybean (Glycine max L.) grown in field environment.
View Article and Find Full Text PDFConsumed globally, oilseeds serve as a major source of proteins and oils in human and animal nutrition, supporting global food security. Zinc (Zn) is an essential micronutrient critical for oil and protein synthesis in plants. In this study, we synthesized three distinct sized zinc oxide nanoparticles (nZnO: 38 nm = S [small], 59 nm = M [medium], and > 500 nm = L [large], and assessed the potential effects of varied particle sizes and concentrations (0, 50, 100, 200, and 500 mg/kg-soil) on seed yield attributes, nutrient quality and oil and protein yield in soybean (Glycine max L.
View Article and Find Full Text PDFAddressing global Zinc (Zn) deficiency in food and feed requires innovation in Zn fertilizer. Recently, Zn oxide nanoparticles (ZnONPs) have piqued interest for potential use as a novel nano-Zn fertilizer. However, little is known about potential factors influencing ZnONPs partitioning in different plant tissues, and changes in root system architecture (RSA) and soil characteristics.
View Article and Find Full Text PDFUnderstanding the potential uptake and biodistribution of engineered nanoparticles (ENPs) in soil-grown plants is imperative for realistic toxicity and risk assessment considering the oral intake of edibles by humans. Herein, growing N-fixing symbiont () inoculated soybean ( (L.) Merr.
View Article and Find Full Text PDFDearth of knowledge about the prospect of using Zinc (Zn) based nanoparticles (NPs) to enrich Zn-deficient soils with Zn warrants investigations into potential soil applications of ZnONPs for improving crop yield and plant health. Herein, we investigated the potential influence of ZnONPs on seed yield, focusing on particle size-, morphology-, and concentration-dependent responses of multiple antioxidant defense biomarkers, in soil-grown soybean (Glycine max cv. Kowsar) during its lifecycle of 120 d.
View Article and Find Full Text PDFIncreasing applications of engineered nanomaterials (ENMs) warrant lifecycle assessment of their potential toxicity. Herein, we investigated potential phytotoxicity of copper oxide nanoparticles (CuONPs) on seed yield, focusing on particle size- and concentration-dependent responses of multiple antioxidant defense biomarkers, in soil-grown Glycinemax (cv. Kowsar) during its lifecycle.
View Article and Find Full Text PDF