High-throughput DNA and RNA sequencing are revolutionizing precision oncology, enabling personalized therapies such as cancer vaccines designed to target tumor-specific neoepitopes generated by somatic mutations expressed in cancer cells. Identification of these neoepitopes from next-generation sequencing data of clinical samples remains challenging and requires the use of complex bioinformatics pipelines. In this paper, we present GeNeo, a bioinformatics toolbox for genomics-guided neoepitope prediction.
View Article and Find Full Text PDFBackground: Personalized cancer vaccines are emerging as one of the most promising approaches to immunotherapy of advanced cancers. However, only a small proportion of the neoepitopes generated by somatic DNA mutations in cancer cells lead to tumor rejection. Since it is impractical to experimentally assess all candidate neoepitopes prior to vaccination, developing accurate methods for predicting tumor-rejection mediating neoepitopes (TRMNs) is critical for enabling routine clinical use of cancer vaccines.
View Article and Find Full Text PDF