Ultra-high dose rate (UHDR) irradiation has been shown to have a sparing effect on healthy tissue, an effect known as 'FLASH'. This effect has been studied across several radiation modalities, including photons, protons and clinical energy electrons, however, very little data is available for the effect of FLASH with Very High Energy Electrons (VHEE). pBR322 plasmid DNA was used as a biological model to measure DNA damage in response to Very High Energy Electron (VHEE) irradiation at conventional (0.
View Article and Find Full Text PDFVery high energy electrons (VHEE) are a potential candidate for radiotherapy applications. This includes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivity of VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used to perform successful in vitro radiobiological studies.
View Article and Find Full Text PDFThe pBR322 plasmid DNA was irradiated with 35 MeV electrons, 228 MeV protons and 300 kVp X-rays to quantify DNA damage and make comparisons of DNA damage between radiation modalities. Plasmid was irradiated in a medium containing hydroxyl radical scavengers in varying concentrations. This altered the amount of indirect hydroxyl-mediated DNA damage, to create an environment that is more closely associated with a biological cell.
View Article and Find Full Text PDFImmunofluorescent tagging of DNA double-strand break (DSB) markers, such as γ-H2AX and other DSB repair proteins, are powerful tools in understanding biological consequences following irradiation. However, whilst the technique is widespread, there are many uncertainties related to its ability to resolve and reliably deduce the number of foci when counting using microscopy. We present a new tool for simulating radiation-induced foci in order to evaluate microscope performance within in silico immunofluorescent images.
View Article and Find Full Text PDFPreclinical radiation research lacks standardized dosimetry procedures that provide traceability to a primary standard. Consequently, ensuring accuracy and reproducibility between studies is challenging. Using 3D printed murine phantoms we undertook a dosimetry audit of Xstrahl Small Animal Radiation Research Platforms (SARRPs) installed at 7 UK centres.
View Article and Find Full Text PDFMicronucleus (MN) formation is routinely used as a biodosimeter for radiation exposures and has historically been used as a measure of DNA damage in cells. Strongly correlating with dose, MN are also suggested to indicate radiation quality, differentiating between particle and photon irradiation. The "gold standard" for measuring MN formation is Fenech's cytokinesis-block micronucleus (CBMN) cytome assay, which uses the cytokinesis blocking agent cytochalasin-B.
View Article and Find Full Text PDFNRH:quinone oxidoreductase 2 enzyme (NQO2) is a potential therapeutic target in cancer and neurodegenerative diseases, with roles in either chemoprevention or chemotherapy. Here we report the design, synthesis and evaluation of non-symmetrical furan-amidines and their analogues as novel selective NQO2 inhibitors with reduced adverse off-target effects, such as binding to DNA. A pathway for the synthesis of the non-symmetrical furan-amidines was established from the corresponding 1,4-diketones.
View Article and Find Full Text PDF