Exposure to low-intensity radiation in the near-infrared (NIR) spectral region matching the optically transparent "phototherapeutic window" of biological tissues can be applied to directly populate spin-restricted excited states of light-responsive compounds. This unconventional and unprecedented approach is introduced herein as a new strategy to overcome some of the major unresolved problems observed in the rapidly emerging fields of photopharmacology and molecular photomedicine, where practical applications in living cells and organisms are still limited by undesired side reactions and insufficient light penetration. Water-soluble and biocompatible metal complexes with a significant degree of spin-orbit coupling were identified as target candidates for testing our new hypothesis.
View Article and Find Full Text PDFRhenium(I) carbonyl complexes carrying substituted bis(arylimino)acenaphthene ligands (BIAN-R) have been tested as potential catalysts for the two-electron reduction of carbon dioxide. Cyclic voltammetric studies as well as controlled potential electrolysis experiments were performed using CO2-saturated solutions of the complexes in acetonitrile and acetonitrile-water mixtures. Faradaic efficiencies of more than 30 % have been determined for the electrocatalytic production of CO.
View Article and Find Full Text PDF