Publications by authors named "Elham Fini"

Asphalt, widely used in infrastructure, emits complex chemical mixtures throughout its service life, posing significant risks to human health and the environment. This expanded understanding extends the concern from a construction-related hazard to a broader public health issue, especially affecting vulnerable populations like children who play on blacktop surfaces. Despite increased awareness, the specific mechanisms behind asphalt emissions, their impact on asphalt deterioration, and their effects on the human nervous system remain poorly understood.

View Article and Find Full Text PDF

As waste production increases and resources become limited, sewage sludge presents a valuable resource with potential beyond traditional land use and incineration. This review emphasizes exploring innovative non-fertilizer applications of sewage sludges and advocates for viewing wastewater treatment plants as sources of valuable feedstock and carbon sequestration. Innovative uses include integrating sewage sludge into construction materials such as asphalt pavements, geopolymer, cementitious composites, and masonry blocks.

View Article and Find Full Text PDF

Asphalt-related emissions pose significant health risks due to the release of volatile organic compounds (VOCs) that affect both workers in construction and the general public. Even at low concentrations, certain VOCs are highly toxic, with some of their metabolic byproducts, such as epoxides, known to cause DNA damage, oxidative stress, and other genetic alterations. The health implications are particularly concerning given that these emissions are persistent, and exposure can occur over prolonged periods, especially in urban areas where asphalt is prevalent.

View Article and Find Full Text PDF

Asphalt is used globally in construction for roads, pavements, and buildings; however, as a fossil-derived material, it is known to generate volatile organic compounds (VOCs) upon exposure to heat and light that can be harmful to human health. Several heterogeneous strategies have been reported for the inhibition of these VOCs; however, the direct use of inexpensive, accessible Earth-Abundant metals has not been extensively explored. In this study, simple metal salts are examined for their coordination capability toward asphalt-derived VOCs.

View Article and Find Full Text PDF

The recycling of scrap tire rubber requires high levels of energy, which poses challenges to its proper valorization. The application of rubber in construction requires significant mechanical and/or chemical treatment of scrap rubber to compatiblize it with the surrounding matrix. These methods are energy-consuming and costly and may lead to environmental concerns associated with chemical leachates.

View Article and Find Full Text PDF

This study evaluates pyrolysis products obtained from biomasses (silver grass, pine, and acacia) harvested from heavy-metal-contaminated soil. To do so, we utilized two methods: a batch one-stage pyrolysis, and a continuous two-stage pyrolysis. The study results show that the yields and characteristics of bio-oils and biochars varied depending on the pyrolysis process and the type of biomass.

View Article and Find Full Text PDF

Ionically cross-linked alginate hydrogels are used in a wide range of applications, such as drug delivery, tissue engineering, and food packaging. A shortcoming of these gels is that they lose their strength and degrade at low pH values. To develop gels able to preserve their integrity in a wide range of pH values, Ca-alginate-montmorillonite nanocomposite gels are prepared, and their chemical structure, morphology, and mechanical response are analyzed.

View Article and Find Full Text PDF

This study examines how aging affects the healing capacity of bituminous composites containing polyphosphoric acid (PPA). PPA is commonly used in bituminous composites to enhance its elasticity, however, PPA effectiveness highly depends on other constituents on the matrix and the environmental (internal and external) factors. In terms of internal factors, the interplay between PPA and various bitumen modifiers have been extensively studied.

View Article and Find Full Text PDF

Soil-based filter media in green infrastructure buffers only a minor portion of deicing salt in surface water, allowing most of that to infiltrate into groundwater, thus negatively impacting drinking water and the aquatic ecosystem. The capacity of the filter medium to adsorb and fixate sodium (Na) and chloride (Cl) ions has been shown to improve by biochar amendment. The extent of improvement, however, depends on the type and density of functional groups on the biochar surface.

View Article and Find Full Text PDF

This research demonstrates the development, application, and mechanistic value of a multi-detector asymmetric flow field-flow fractionation (AF4) approach to acquire size-resolved drug loading and release profiles from polymeric nanoparticles (NPs). AF4 was hyphenated with multiple online detectors, including dynamic and multi-angle light scattering for NP size and shape factor analysis, fluorescence for drug detection, and total organic carbon (TOC) to quantify the NPs and dissolved polymer in nanoformulations. The method was demonstrated on poly(lactic-co-glycolic acid) (PLGA) NPs loaded with coumarin 6 (C6) as a lipophilic drug surrogate.

View Article and Find Full Text PDF

Asphalt-surfaced areas such as roads have been reported as major non-combustion sources of reactive organic compounds in urban areas. Emission of latter compounds from asphalt is exacerbated due to exposure to sunlight and high temperature, contributing to negative human and environmental health outcomes. Furthermore, loss of asphalt components over time is linked to bitumen's aging that reduces service life of roads.

View Article and Find Full Text PDF

Oxidative aging is an inevitable environmental factor that accelerates asphalt pavement deterioration. This study employed a molecular dynamics simulation to investigate the impact of aging on asphalt cement from the perspectives of thermodynamic properties, and diffusion and adhesion characteristics. Results indicate that aging increased bulk density from 1.

View Article and Find Full Text PDF

Background: One way to reduce the burden of early detection of COVID-19 disease is in vulnerable and high-risk groups. The aim of this study was to diagnose and evaluate the disease in the homeless in Southern Iran Bandar Abbas.

Materials And Methods: The target group of this study was 234 homeless people.

View Article and Find Full Text PDF

Understanding the interactions and transmission of pathogens with/via inanimate surfaces common in the built environment and public transport vehicles is critical to promoting sustainable and resilient urban development. Here, molecular dynamics (MD) simulations are used to study the adhesion of SARS-CoV-2 (the causative agent of COVID-19) to some of these surfaces at different temperatures (same for surfaces and ambiance) ranging from -23 to 60 °C. Surfaces simulated are aluminum, copper, copper oxide, polyethylene (PE), and silicon dioxide (SiO).

View Article and Find Full Text PDF

It has been reported that adding polyphosphoric acid (PPA) to bitumen modified with Montmorillonite clay (MMT) makes the bituminous composite less prone to swelling and more resistant to moisture damage, thus improving two major causes of pavement distress. There has been no in-depth study on the underlying mechanism for such a synergistic effect between MMT and PPA. Here, we used laboratory experiments and computational modeling to study how PPA moderates the intermolecular interactions in bitumen modified with MMT.

View Article and Find Full Text PDF

Many biomodifiers have recently been introduced to the asphalt industry to improve the performance of asphalt mixtures, rejuvenate aged asphalt, and/or partially replace asphalt binder. It is critical to screen these biomodifiers for their susceptibility to moisture damage before they are used in construction. This study develops a computational approach and a laboratory technique to predict the moisture susceptibility of modifiers used in asphalt binder mixtures.

View Article and Find Full Text PDF

This paper examines the merits of using an inherently functionalized carbon, referred to as biochar as a free radical scavenger. The biochar was made from thermochemical liquefaction of a blend of algae (rich in protein and nucleic acids) and manure (rich in lipid). Here, we studied biochar's efficacy as a free-radical scavenger and ultraviolet blocker to qualify it as an anti-aging additive in construction, including roofing shingles made from the bituminous composite.

View Article and Find Full Text PDF

In recent years, the dominant organizing role of non-covalent π-stacking interactions in the association of asphaltenes and porphyrins was criticized and replaced with cooperative forces that are mostly covalent in nature. Here, we show the significant contribution of non-covalent forces in stabilizing the π-stacking of asphaltenes and porphyrins. To understand the binding chemistry of metalloporphyrin-asphaltene, the interaction of nickel octaethylporphyrin with a series of model fragments for asphaltene was studied in two different pathways: axial coordination and π-stacking.

View Article and Find Full Text PDF

This paper studies the selective adsorption and dewetting processes of various biomodifiers with respect to siliceous surfaces to determine dominant moisture damage mechanisms in bitumen doped with biomodifiers. Accordingly, it introduces four different biomodifiers made from various biomasses while explaining their differential effects on moisture susceptibility of bitumen when they are introduced to bitumen as a modifier to make commonly used biomodified binders. The biomodified binders studied here are made from extracts of biomass: wood pellets, miscanthus, corn stover, and animal waste.

View Article and Find Full Text PDF

This paper investigates merits of using a wood-based biocrude (WB) from aspen wood to improve the compatibility of halloysite nanotubes (HNTs) with high-impact polystyrene to develop nanocomposites with desirable thermomechanical properties. Morphological, thermal, and rheological properties of the resulting nanocomposite are used as indicators of the compatibility and dispersion of the modified HNT within the polymer matrix. Computational modeling using density functional theory is used along with laboratory experiments to provide a multiscale characterization of the above biocrude and nanocomposites.

View Article and Find Full Text PDF

Introduction: Vitiligo is a common acquired depigmented systemic disorder influencing the entire pigmentary system including Cochlear melanocytes and vestibular system in the inner ear. Vitiligo can leads to social negative impact and poorer quality of life among these patients. This study was conducted to investigate the relationship between skin involvement severity and hearing loss severity among vitiligo patients.

View Article and Find Full Text PDF

In recent years, many researchers have investigated bitumen surface morphology, especially the so-called bee-like structures, in an attempt to relate the chemical composition and molecular conformation to bitumen micromechanics and ultimately performance properties. Even though recent studies related surface morphology and its evolution to stiffness and stress localization, the complex chemical nature of bitumen and its time- and temperature-dependent properties still engender significant questions about the nature and origin of the observed morphological features and how they evolve due to exposure to various environmental and loading conditions. One such question is whether the observed surface features are formed from wax or from the coprecipitation of wax and asphaltene.

View Article and Find Full Text PDF