Aerogel-based biomaterials are increasingly being considered for biomedical applications due to their unique properties such as high porosity, hierarchical porous network, and large specific pore surface area. Depending on the pore size of the aerogel, biological effects such as cell adhesion, fluid absorption, oxygen permeability, and metabolite exchange can be altered. Based on the diverse potential of aerogels in biomedical applications, this paper provides a comprehensive review of fabrication processes including sol-gel, aging, drying, and self-assembly along with the materials that can be used to form aerogels.
View Article and Find Full Text PDFMussel-inspired catechol-functionalization of degradable natural biomaterials has garnered significant interest as an approach to achieve bioadhesion for sutureless wound closure. However, conjugation capacity in standard coupling reactions, such as carbodiimide chemistry, is limited by low yield and lack of abundant conjugation sites. Here, a simple oxidative polymerization step before conjugation of catechol-carrying molecules (i.
View Article and Find Full Text PDFThe contact lens (CL) industry has made great strides in improving CL-wearing experiences. However, a large amount of CL wearers continue to experience ocular dryness, known as contact lens-induced dry eye (CLIDE), stemming from the reduction in tear volume, tear film instability, increased tear osmolarity followed by inflammation and resulting in ocular discomfort and visual disturbances. In this article, to address tear film thinning between the CL and the ocular surface, the concept of using a CL with microchannels to deliver the tears from the pre-lens tear film (PrLTF) to the post-lens ocular surface using in vitro eye-blink motion is investigated.
View Article and Find Full Text PDFEmerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions.
View Article and Find Full Text PDFHemostatic biomaterials show great promise in wound control for the treatment of uncontrolled bleeding associated with damaged tissues, traumatic wounds, and surgical incisions. A surge of interest has been directed at boosting hemostatic properties of bioactive materials mechanisms triggering the coagulation cascade. A wide variety of biocompatible and biodegradable materials has been applied to the design of hemostatic platforms for rapid blood coagulation.
View Article and Find Full Text PDFMetal additive manufacturing (AM) has led to an evolution in the design and fabrication of hard tissue substitutes, enabling personalized implants to address each patient's specific needs. In addition, internal pore architectures integrated within additively manufactured scaffolds, have provided an opportunity to further develop and engineer functional implants for better tissue integration, and long-term durability. In this review, the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted.
View Article and Find Full Text PDFInterconnected pathways in 3D bioartificial organs are essential to retaining cell activity in thick functional 3D tissues. 3D bioprinting methods have been widely explored in biofabrication of functionally patterned tissues; however, these methods are costly and confined to thin tissue layers due to poor control of low-viscosity bioinks. Here, cell-laden hydrogels that could be precisely patterned via water-soluble gelatin templates are constructed by economical extrusion 3D printed plastic templates.
View Article and Find Full Text PDFDroplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
Hydrogel patches with high toughness, stretchability, and adhesive properties are critical to healthcare applications including wound dressings and wearable devices. Gelatin methacryloyl (GelMA) provides a highly biocompatible and accessible hydrogel platform. However, low tissue adhesion and poor mechanical properties of cross-linked GelMA patches (.
View Article and Find Full Text PDFViral infection is one of the leading causes of mortality worldwide. The growth of globalization significantly increases the risk of virus spreading, making it a global threat to future public health. In particular, the ongoing coronavirus disease 2019 (COVID-19) pandemic outbreak emphasizes the importance of devices and methods for rapid, sensitive, and cost-effective diagnosis of viral infections in the early stages by which their quick and global spread can be controlled.
View Article and Find Full Text PDFLaser additive manufacturing has led to a paradigm shift in the design of next-generation customized porous implants aiming to integrate better with the surrounding bone. However, conflicting design criteria have limited the development of fully functional porous implants; increasing porosity improves body fluid/cell-laden prepolymer permeability at the expense of compromising mechanical stability. Here, functionally gradient porosity implants and scaffolds designed based on interconnected triply periodic minimal surfaces (TPMS) are demonstrated.
View Article and Find Full Text PDFNext generation engineered tissue constructs with complex and ordered architectures aim to better mimic the native tissue structures, largely due to advances in three-dimensional (3D) bioprinting techniques. Extrusion bioprinting has drawn tremendous attention due to its widespread availability, cost-effectiveness, simplicity, and its facile and rapid processing. However, poor printing resolution and low speed have limited its fidelity and clinical implementation.
View Article and Find Full Text PDFSilicone implants and scaffolds are emerging as potential replacement of flexible tissues, cosmetic and biomedical device implants due to their bioinert and flexible characteristics. The state-of-the-art direct-write silicone three-dimensional (3D) printers however cannot easily 3D print structures with sub-millimeter dimensions because of high viscosity and long curing times of their prepolymers. In the present study, a template-assisted 3D printing of ordered porous silicone constructs is demonstrated.
View Article and Find Full Text PDFOral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine.
View Article and Find Full Text PDFRecently, nanomaterials have been widely utilized in tissue engineering applications due to their unique properties such as the high surface to volume ratio and diversity of morphology and structure. However, most methods used for the fabrication of nanomaterials are rather complicated and costly. Among different nanomaterials, anodic aluminum oxide (AAO) is a great example of nanoporous structures that can easily be engineered by changing the electrolyte type, anodizing potential, current density, temperature, acid concentration and anodizing time.
View Article and Find Full Text PDFThis study evaluated the psychometrics of the Farsi translation of diagnostic interview for attention-deficit hyperactivity disorder (ADHD) in adults (DIVA-5) based on DSM-5 criteria. Referrals to a psychiatric outpatient clinic ( = 120, 61.7% males, mean age 34.
View Article and Find Full Text PDFThe Social Responsiveness Scale-2 (SRS-2) is a well-known screening instrument to assess autistic spectrum symptoms quantitatively. This study assessed the different types of reliability of the Farsi translation of the scale. This scale was translated into Farsi and back translated considering all aspects of methodology in translation.
View Article and Find Full Text PDFThree-dimensional flexible porous conductors have significantly advanced wearable sensors and stretchable devices because of their specific high surface area. Dip coating of porous polymers with graphene is a facile, low cost, and scalable approach to integrate conductive layers with the flexible polymer substrate platforms; however, the products often suffer from nanoparticle delamination and overtime decay. Here, a fabrication scheme based on accessible methods and safe materials is introduced to surface-dope porous silicone sensors with graphene nanoplatelets.
View Article and Find Full Text PDFCognitive theories of depression posit that early maladaptive schemas (EMSs) are key vulnerability factors for psychological disorders. In this study, we investigated specific EMSs as shared or distinct cognitive vulnerability factors for depression and somatization disorder. The sample consisted of patients with Major depressive disorder (N = 30) and Somatization disorder (N = 30) from a community hospital or a psychiatric clinic.
View Article and Find Full Text PDFAttention deficit hyperactivity disorder (ADHD) is one of the most common psychological disorders of childhood. Methylphenidate is highly effective in the treatment of ADHD. This study aimed to determine the effectiveness of combined Parent behavioral management training (PBMT) and medication treatment (Methylphenidate) in reducing ADHD symptoms in 6-12-year-old children, using randomized sampling.
View Article and Find Full Text PDF