Immune checkpoint therapy (ICT) has the power to eradicate cancer, but the mechanisms that determine effective therapy-induced immune responses are not fully understood. Here, using high-dimensional single-cell profiling, we interrogate whether the landscape of T cell states in the peripheral blood predict responses to combinatorial targeting of the OX40 costimulatory and PD-1 inhibitory pathways. Single-cell RNA sequencing and mass cytometry expose systemic and dynamic activation states of therapy-responsive CD4 and CD8 T cells in tumor-bearing mice with expression of distinct natural killer (NK) cell receptors, granzymes, and chemokines/chemokine receptors.
View Article and Find Full Text PDFUnderstanding the mechanisms and impact of booster vaccinations are essential in the design and delivery of vaccination programs. Here we show that a three dose regimen of a synthetic peptide vaccine elicits an accruing CD8 T cell response against one SARS-CoV-2 Spike epitope. We see protection against lethal SARS-CoV-2 infection in the K18-hACE2 transgenic mouse model in the absence of neutralizing antibodies, but two dose approaches are insufficient to confer protection.
View Article and Find Full Text PDFBackground: High serum interleukin (IL-6) levels may cause resistance to immunotherapy by modulation of myeloid cells in the tumor microenvironment. IL-6 signaling blockade is tested in cancer, but as this inflammatory cytokine has pleiotropic effects, this treatment is not always effective.
Methods: IL-6 and IL-6R blockade was applied in an IL-6-mediated immunotherapy-resistant TC-1 tumor model (TC-1.
High serum levels of interleukin-6 (IL-6) correlate with poor prognosis and chemotherapy resistance in several cancers. The underlying mechanisms and its effects on immunotherapy are largely unknown. To address this, we developed a human papillomavirus type 16 (HPV16)-associated tumor model expressing IL-6 to investigate the impact of tumor-expressed IL-6 during cisplatin chemotherapy and HPV16 synthetic long peptide vaccination as immunotherapy.
View Article and Find Full Text PDFBackground: Immunotherapy of cancer is successful but tumor regression often is incomplete and followed by escape. Understanding the mechanisms underlying this acquired resistance will aid the development of more effective treatments.
Methods: We exploited a mouse model where tumor-specific therapeutic vaccination results in tumor regression, followed by local recurrence and resistance.
Background: The capacity of cytomegalovirus (CMV) to elicit long-lasting strong T cell responses, and the ability to engineer the genome of this DNA virus positions CMV-based vaccine vectors highly suitable as a cancer vaccine platform. Defined immune thresholds for tumor protection and the factors affecting such thresholds have not well been investigated in cancer immunotherapy. We here determined using CMV as a vaccine platform whether critical thresholds of vaccine-specific T cell responses can be established that relate to tumor protection, and which factors control such thresholds.
View Article and Find Full Text PDFThe treatment options for cancer-surgery, radiotherapy and chemotherapy-are now supplemented with immunotherapy. Previously underappreciated but now gaining strong interest are the immune modulatory properties of the three conventional modalities. Moreover, there is a better understanding of the needs and potential of the different immune therapeutic platforms.
View Article and Find Full Text PDFCertain cytotoxic chemotherapeutic drugs are immunogenic, stimulating tumor immunity through mechanisms that are not completely understood. Here we show how the DNA-damaging drug cisplatin modulates tumor immunity. At the maximum tolerated dose (MTD), cisplatin cured 50% of mice with established murine TC-1 or C3 tumors, which are preclinical models of human papillomavirus (HPV)-associated cancer.
View Article and Find Full Text PDFPurpose: Cancer immunotherapy, such as vaccination, is an increasingly successful treatment modality, but its interaction with chemotherapy remains largely undefined. Therefore, we explored the mechanism of synergy between vaccination with synthetic long peptides (SLP) of human papillomavirus type 16 (HPV16) and cisplatin in a preclinical tumor model for HPV16.
Experimental Design: SLP vaccination in this preclinical tumor model allowed the elucidation of novel mechanisms of synergy between chemo- and immunotherapy.