We describe the identification of selective SMARCA2, VHL-based heterobifunctional degraders. Structurally novel indolo[1,2-]quinazolin-5(7)-one SMARCA bromodomain binders were optimized and then converted to SMARCA2 degraders by linking them to well-defined VHL ligands. Our exploration led to the discovery of potent and selective degraders of SMARCA2 over the SMARCA4 paralog, leading to potent and selective growth inhibition of SMARCA4 mutant versus wild type cell lines.
View Article and Find Full Text PDFFibroblast growth factor receptors (FGFRs) are transmembrane receptor tyrosine kinases that regulate multiple physiological processes. Aberrant activation of FGFR2 and FGFR3 has been linked to the pathogenesis of many tumor types, including cholangiocarcinoma and bladder cancer. Current therapies targeting the FGFR2/3 pathway exploiting small-molecule kinase inhibitors are associated with adverse events due to undesirable inhibition of FGFR1 and FGFR4.
View Article and Find Full Text PDFHerein we report the discovery of a novel biaryl amide series as selective inhibitors of hematopoietic protein kinase 1 (HPK1). Structure-activity relationship development, aided by molecular modeling, identified indazole as a core for further exploration because of its outstanding enzymatic and cellular potency coupled with encouraging kinome selectivity. Late-stage manipulation of the right-hand aryl and amine moieties surmounted issues of selectivity over TRKA, MAP4K2, and STK4 as well as generating compounds with balanced ADME profiles and promising pharmacokinetics.
View Article and Find Full Text PDFIn spite of the great success of immune checkpoint inhibitors in immune-oncology therapy, an urgent need still exists to identify alternative approaches to broaden the scope of therapeutic coverage. Hematopoietic progenitor kinase 1 (HPK1), also known as MAP4K1, functions as a negative regulator of activation signals generated by the T cell antigen receptor. Herein we report the discovery of novel pyrazolopyridine derivatives as selective inhibitors of HPK1.
View Article and Find Full Text PDFThe clinical development of fedratinib, a Janus kinase (JAK2) inhibitor, was terminated after reports of Wernicke's encephalopathy in myelofibrosis patients. Since Wernicke's encephalopathy is induced by thiamine deficiency, investigations were conducted to probe possible mechanisms through which fedratinib may lead to a thiamine-deficient state. In vitro studies indicate that fedratinib potently inhibits the carrier-mediated uptake and transcellular flux of thiamine in Caco-2 cells, suggesting that oral absorption of dietary thiamine is significantly compromised by fedratinib dosing.
View Article and Find Full Text PDFPurpose: The c-MET receptor tyrosine kinase plays important roles in the formation, progression, and dissemination of human cancer and presents an attractive therapeutic target. This study describes the preclinical characterization of INCB28060, a novel inhibitor of c-MET kinase.
Experimental Design: Studies were conducted using a series of in vitro and in vivo biochemical and biological experiments.
High-throughput screening (HTS) of ~50,000 chemical compounds against phosphorylated and unphosphorylated c-Met, a tyrosine kinase receptor for hepatocyte growth factor (HGF), was carried out in order to compare hit rates, hit potencies and also to explore scaffolds that might serve as potential leads targeting only the unphosphorylated form of the enzyme. The hit rate and potency for the confirmed hit molecules were higher for the unphosphoryalted form of c-Met. While the target of small molecule inhibitor discovery efforts has traditionally been the phosphorylated form, there are now examples of small molecules that target unphosphorylated kinases.
View Article and Find Full Text PDFStopped-flow absorption and isotope effect experiments have been used to dissect the mechanism of formation of the enzyme cysteinyl persulfide intermediate in the reaction of a cysteine desulfurase (CD), CD0387 from Synechocystis sp. strain PCC 6803. Seven accumulating intermediates have been identified and tentatively mapped onto the CD chemical mechanism originally proposed by Dean, White, and co-workers [Zheng, L.
View Article and Find Full Text PDFWe demonstrate that the steady state reaction of lysine 5,6-aminomutase with substrate analogue 4-thia-l-lysine generates a radical intermediate, which accumulates in the enzyme to an electron paramagnetic resonance (EPR) detectable level. EPR line width narrowing of approximately 1 mT due to [4'-(2)H] labeling of the pyridoxal-5'-phosphate (PLP), an isotropic hyperfine coupling of 40 MHz for the proton at C4' of PLP derived from (2)H electron nuclear double resonance (ENDOR) measurement, and spin density delocalization onto the (31)P of PLP realized from observations of the (31)P ENDOR signal provide unequivocal identification of the radical as a substrate-PLP-based species. X- and Q-band EPR spectra fittings demonstrate that this radical is spin coupled with the low spin Co(2+) in cob (II) alamin and the distance between the two species is about 10 A.
View Article and Find Full Text PDFLysine 2,3-aminomutase (LAM) utilizes a [4Fe-4S] cluster, S-adenosyl-L-methionine (SAM), and pyridoxal 5'-phosphate (PLP) to isomerize L-alpha-lysine to L-beta-lysine. LAM is a member of the radical-SAM enzyme superfamily in which a [4Fe-4S]+ cluster reductively cleaves SAM to produce the 5'-deoxyadenosyl radical, which abstracts an H-atom from substrate to form 5'-deoxyadenosine (5'-Ado) and the alpha-Lys* radical (state 3 (Lys*)). This radical isomerizes to the beta-Lys* radical (state 4(Lys*)), which then abstracts an H-atom from 5'-Ado to form beta-lysine and the 5'-deoxyadenosyl radical; the latter then regenerates SAM.
View Article and Find Full Text PDFLysine 5,6-aminomutase is an adenosylcobalamin and pyridoxal-5'-phosphate-dependent enzyme that catalyzes a 1,2 rearrangement of the terminal amino group of dl-lysine and of l-beta-lysine. We have solved the x-ray structure of a substrate-free form of lysine-5,6-aminomutase from Clostridium sticklandii. In this structure, a Rossmann domain covalently binds pyridoxal-5'-phosphate by means of lysine 144 and positions it into the putative active site of a neighboring triosephosphate isomerase barrel domain, while simultaneously positioning the other cofactor, adenosylcobalamin, approximately 25 A from the active site.
View Article and Find Full Text PDFCysteine desulfurases (CDs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that cleave sulfur from cysteine via an enzyme cysteinyl persulfide intermediate. In vitro studies of these enzymes have generally employed dithiothreitol as a cosubstrate to reductively cleave the persulfide intermediate, and it has been suggested that persulfide cleavage is the rate-limiting step for catalysis. In this study, the kinetics and mechanisms of cleavage of the persulfide intermediate in Slr0387 (CD-0387), a sequence group I (NifS/IscS-like) cysteine desulfurase from Synechocystis sp.
View Article and Find Full Text PDF