Publications by authors named "Elham Babaie"

Objectives: The study evaluates the efficacy to remineralize artificial and natural dentin lesions through restorative dental procedures that include the Polymer-Induced Liquid Precursor (PILP) method comprising polyaspartic acid (pAsp).

Methods: Novel ionomeric cement compositions based on bioglass 45S5 and pAsp mixtures, as well as conditioning solutions (conditioner) containing 5 mg/mL pAsp, were developed and tested on demineralized dentin blocks (3-4 mm thick) on shallow and deep lesions with the thickness of 140 μm ± 50 and 700 μm ± 50, respectively. In the first treatment group, 20 μL of conditioner was applied to demineralized shallow (n = 3) and deep (n = 3) lesion specimens for 20 s before restoration with glass ionomer cement (RMGIC).

View Article and Find Full Text PDF

Porous biomaterials have been widely used in a variety of orthopedic applications. Porous scaffolds stimulate the cellular responses and accelerate osteogenesis. The porous structure of scaffolds, as well as their compositions, dictate cellular responses such as their adhesion, penetration, differentiation, nutrition diffusion, and bone in-growth.

View Article and Find Full Text PDF

Due to the combination of many unique properties, magnesium alloys have been widely recognized as suitable metallic materials for fabricating degradable biomedical implants. However, the extremely high degradation kinetics of magnesium alloys in the physiological environment have hindered their clinical applications. This paper reports for the first time the use of a novel microwave-assisted coating process to deposit magnesium phosphate (MgP) coatings on the Mg alloy AZ31 and improve its in vitro corrosion resistance.

View Article and Find Full Text PDF

This paper is a sequel to our previous effort in developing Mg-phosphate orthopedic cements using amorphous Mg-phosphate (AMP) as the precursor. In this paper, we report a new real-time in situ technique to create macroporous bone growth substitute (BGS). The method uses biodegradable Mg-particles as the porogen.

View Article and Find Full Text PDF

This paper reports for the first time the development of a biodegradable, non-exothermic, self-setting orthopedic cement composition based on amorphous magnesium phosphate (AMP). The occurrence of undesirable exothermic reactions was avoided through using AMP as the solid precursor. The phenomenon of self-setting with optimum rheology is achieved by incorporating a water soluble biocompatible/biodegradable polymer, polyvinyl alcohol (PVA).

View Article and Find Full Text PDF

Biocompatible amorphous magnesium calcium phosphate (AMCP) particles were synthesized using ethanol in precipitation medium from moderately supersaturated solution at pH10. Some synthesis parameters such as, (Mg+Ca):P, Mg:Ca ratio and different drying methods on the structure and stability of as-produced powder was studied and characterized using SEM, XRD and cell cytocompatibility. The results showed that depending on the Mg(2+) concentration, nano crystalline Struvite (MgNH4PO4·6H2O) can also be alternatively formed.

View Article and Find Full Text PDF