Publications by authors named "Elgersma Y"

Angelman Syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of ubiquitin-protein ligase E3A (UBE3A), resulting in marked changes in synaptic plasticity. In AS mice, a dysregulation of Ca/calmodulin-dependent protein kinase II alpha (CaMKIIα) was previously described. This has been convincingly validated through genetic rescue of prominent phenotypes in mouse cross-breeding experiments.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess whether short-term treatment with lamotrigine can enhance cognitive functioning in adolescents with neurofibromatosis type 1 (NF1).
  • A double-blind, randomized clinical trial involved 31 participants aged 12 to 17 taking 200 mg of lamotrigine for 26 weeks, measuring outcomes like performance IQ and various cognitive skills.
  • Results indicated that lamotrigine did not significantly affect overall cognitive performance or most secondary outcomes, with only a slight trend towards improved visual sustained attention noted in the treatment group.
View Article and Find Full Text PDF

Antisense oligonucleotides (ASOs) offer versatile tools to modify the processing and expression levels of gene transcripts. As such, they have a high therapeutic potential for rare genetic diseases, where applicability of each ASO ranges from thousands of patients worldwide to single individuals based on the prevalence of the causative pathogenic variant. It was shown that development of individualized ASOs was feasible within an academic setting, starting with Milasen for the treatment of a patient with CLN7 Batten's disease in the USA.

View Article and Find Full Text PDF
Article Synopsis
  • In biomedical research for rare diseases, model organisms are essential for understanding disease mechanisms, identifying biomarkers, and developing therapies.
  • Solve-RD is an EU-funded project focused on addressing numerous previously unresolved rare diseases.
  • The project has led to the creation of the European Rare Disease Models & Mechanisms Network (RDMM-Europe) to enhance research efforts in this area.
View Article and Find Full Text PDF

The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is a ubiquitous cellular pathway. mTORopathies, a group of disorders characterized by hyperactivity of the mTORC1 pathway, illustrate the prominent role of the mTOR pathway in disease pathology, often profoundly affecting the central nervous system. One of the most debilitating symptoms of mTORopathies is drug-resistant epilepsy, emphasizing the urgent need for a deeper understanding of disease mechanisms to develop novel anti-epileptic drugs.

View Article and Find Full Text PDF
Article Synopsis
  • FEM1B is a key protein related to ubiquitin ligase complexes that influences various biological functions, including mitochondrial activity as a redox sensor, but its role in human disease is not well understood.
  • Researchers identified individuals with a specific genetic variant in FEM1B and conducted clinical evaluations, along with experiments using model systems to analyze the variant's effects.
  • The findings reveal that a recurrent mutation in FEM1B (p.(Arg126Gln)) leads to severe neurodevelopmental disorders and related physical abnormalities, suggesting that this variant causes dysfunctional activation of FEM1B that results in developmental issues.
View Article and Find Full Text PDF
Article Synopsis
  • Angelman syndrome (AS) is linked to genetic issues on chromosome 15, but the exact genetic causes are not fully understood for some patients.
  • The study aimed to explore the role of a specific gene in AS and use exome sequencing to identify new potential genes involved in the syndrome.
  • Researchers found seven variants, including three novel ones, and identified 22 genes that may relate to AS-like conditions, suggesting new paths for genetic counseling and diagnosis confirmation.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found 23 specific changes in a gene related to this complex that affect 38 people, leading to problems with brain cell growth and learning in animals.
  • * By targeting certain stress response proteins, they discovered ways to help fix some of the immune issues caused by these disorders, leading to new ideas for treatments.
View Article and Find Full Text PDF

Angelman syndrome (AS) is a rare genetic disorder due to lack of UBE3A function on chromosome 15q11.2q13 caused by a deletion, uniparental paternal disomy (UPD), imprinting center disorder (ICD), or pathological variant of the UBE3A gene. AS is characterized by developmental delay, epilepsy, and lack of speech.

View Article and Find Full Text PDF

Intellectual disability (ID) and retinal dystrophy (RD) are the frequently found features of multiple syndromes involving additional systemic manifestations. Here, we studied a family with four members presenting severe ID and retinitis pigmentosa (RP). Using genome wide genotyping and exome sequencing, we identified a nonsense variant c.

View Article and Find Full Text PDF

Angelman Syndrome (AS) is a rare genetic disorder caused by lack of maternal UBE3A protein due to a deletion of the chromosome 15q11.2-q13 region, uniparental paternal disomy, imprinting center defect, or pathogenic variant in the gene. Characteristics are developmental delay, epilepsy, behavioral, and sleep problems.

View Article and Find Full Text PDF

Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an essential, ubiquitously abundant protein involved in mRNA processing. Genetic variants in other members of the HNRNP family have been associated with neurodevelopmental disorders. Here, we describe 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found 15 new genetic variants in the PSMC3 gene, linked to a specific type of neurodevelopmental delay and intellectual disability in 23 unrelated patients.
  • Mouse and fruit fly experiments showed that these variants hindered normal neuron growth and learning abilities.
  • The variants were shown to disrupt proteasome function, leading to cellular stress and abnormal immune responses, suggesting a connection between proteasome issues and neurodevelopmental disorders.
View Article and Find Full Text PDF

Angelman syndrome (AS) is a severe neurodevelopmental disorder (NDD) caused by loss of functional ubiquitin protein ligase E3A (UBE3A). Previous studies showed that UBE3A plays an important role in the first postnatal weeks of mouse brain development, but its precise role is unknown. Since impaired striatal maturation has been implicated in several mouse models for NDDs, we studied the importance of UBE3A in striatal maturation.

View Article and Find Full Text PDF

Background: Neurofibromatosis type 1 (NF1) is a neurodevelopmental genetic disorder associated with visual-spatial and visuomotor deficits, which have not been studied well in adults with NF1.

Methods: In 22 adults with NF1 and 31 controls, visuomotor functioning was assessed by measuring eye latency, hand latency and hand accuracy during visuomotor tasks. Visual-spatial functioning was assessed by measuring eye movement responses during the Visual Threshold Task.

View Article and Find Full Text PDF

Angelman Syndrome (AS) is a severe neurodevelopmental disorder, caused by the neuronal absence of the ubiquitin protein ligase E3A (UBE3A). UBE3A promotes ubiquitin-mediated protein degradation and functions as a transcriptional coregulator of nuclear hormone receptors, including the glucocorticoid receptor (GR). Previous studies showed anxiety-like behavior and hippocampal-dependent memory disturbances in AS mouse models.

View Article and Find Full Text PDF

Individuals with Neurofibromatosis type 1 (NF1) experience a high degree of motor problems. The cerebellum plays a pivotal role in motor functioning and the NF1 gene is highly expressed in cerebellar Purkinje cells. However, it is not well understood to what extent NF1 affects cerebellar functioning and how this relates to NF1 motor functioning.

View Article and Find Full Text PDF

With the recent findings that mutations in the gene encoding the α-subunit of calcium/calmodulin-dependent protein kinase II (CAMK2A) causes a neurodevelopmental disorder (NDD), it is of great therapeutic relevance to know if there exists a critical developmental time window in which CAMK2A needs to be expressed for normal brain development, or whether expression of the protein at later stages is still beneficial to restore normal functioning. To answer this question, we generated an inducible mouse model, which allows us to express CAMK2A at any desired time. Here, we show that adult expression of CAMK2A rescues the behavioral and electrophysiological phenotypes seen in the knock-out mice, including spatial and conditional learning and synaptic plasticity.

View Article and Find Full Text PDF

Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of expression of the maternal copy of the UBE3A gene. Individuals with AS have a multifaceted behavioral phenotype consisting of deficits in motor function, epilepsy, cognitive impairment, sleep abnormalities, as well as other comorbidities. Effectively modeling this behavioral profile and measuring behavioral improvement will be crucial for the success of ongoing and future clinical trials.

View Article and Find Full Text PDF

Chromosome 15q11.2-q13.1 duplication syndrome (Dup15q syndrome) is a severe neurodevelopmental disorder characterized by intellectual disability, impaired motor coordination, and autism spectrum disorder.

View Article and Find Full Text PDF

Objective: The inability to properly process visual information has been frequently associated with neurofibromatosis type 1 (NF1). Based on animal studies, the cause of cognitive disabilities in NF1 is hypothesized to arise from decreased synaptic plasticity. Visual cortical plasticity in humans can be investigated by studying visual evoked potentials (VEPs) in response to visual stimulation.

View Article and Find Full Text PDF

Mitogen-activated protein 3 kinase 7 (MAP3K7) encodes the ubiquitously expressed transforming growth factor β-activated kinase 1, which plays a crucial role in many cellular processes. Mutationsin the MAP3K7 gene have been linked to two distinct disorders: frontometaphyseal dysplasia type 2 (FMD2) and cardiospondylocarpofacial syndrome (CSCF). The fact that different mutations can induce two distinct phenotypes suggests a phenotype/genotype correlation, but no side-by-side comparison has been done thus far to confirm this.

View Article and Find Full Text PDF

Angelman syndrome is a rare neurodevelopmental disorder caused by mutations affecting the chromosomal 15q11-13 region, either by contiguous gene deletions, imprinting defects, uniparental disomy, or mutations in the UBE3A gene itself. Phenotypic abnormalities are driven primarily, but not exclusively (especially in 15q11-13 deletion cases) by loss of expression of the maternally inherited UBE3A gene expression. The disorder was first described in 1965 by the English pediatrician Harry Angelman.

View Article and Find Full Text PDF

The marble burying test is a commonly used paradigm to describe phenotypes in mouse models of neurodevelopmental and psychiatric disorders. The current methodological approach relies predominantly on reporting the number of buried marbles at the end of the test. By measuring the proxy of the behavior (buried marbles), many important characteristics regarding the temporal aspect of this assay are lost.

View Article and Find Full Text PDF

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of neuronal E3 ligase UBE3A. Restoring UBE3A levels is a potential disease-modifying therapy for AS and has recently entered clinical trials. There is paucity of data regarding the molecular changes downstream of UBE3A hampering elucidation of disease therapeutics and biomarkers.

View Article and Find Full Text PDF