Regulatory proteins play a crucial role in adaptation to environmental cues. Especially for lifestyle transitions, such as cell proliferation or apoptosis, switch-like characteristics are desirable. While nature frequently uses regulatory circuits to amplify or dampen signals, stand-alone protein switches are interesting for applications like biosensors, diagnostic tools, or optogenetics.
View Article and Find Full Text PDFThe oxidized phospholipids (oxPL) 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) are generated from 1-palmitoyl-2-arachidonoyl-phosphatidylcholine under conditions of oxidative stress. These oxPL are components of oxidized low density lipoprotein. They are cytotoxic in cells of the arterial wall thus playing an important role in the development and progression of atherosclerosis.
View Article and Find Full Text PDFBackground: The interactions of oxidized low-density lipoprotein (LDL) and macrophages are hallmarks in the development of atherosclerosis. The biological activities of the modified particle in these cells are due to the content of lipid oxidation products and apolipoprotein modification by oxidized phospholipids.
Results: It was the aim of this study to determine the role of short-chain oxidized phospholipids as components of modified LDL in cultured macrophages.
Lipid oxidation is now thought to be an initiating and sustaining event in atherogenesis. Oxidatively fragmented phospholipids, namely 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), present in minimally modified LDL and atherosclerotic lesions, have been reported to elicit a wide range of pathophysiological responses in the cells of the vascular wall. Nevertheless, the question of their potential sites of action and their primary molecular targets remains open.
View Article and Find Full Text PDFShort- and long-chain 1-O-alkyl-2-acylaminodeoxyglycero- and alkoxy-alkylphosphonic acid p-nitrophenyl esters were synthesized as inhibitors for analytical and mechanistic studies on lipolytic enzymes. The respective compounds contain perylene or nitrobenzoxadiazole as reporter fluorophores covalently bound to the omega-ends of the respective 2-acylamino- and alkoxy- residues. Their inhibitory effects on the activities of three selected lipases showing different substrate preferences were determined, including the lipases from Rhizopus oryzae, Pseudomonas species, and Pseudomonas cepacia.
View Article and Find Full Text PDF