Background: The most well known reproductive consequence of residence at high altitude (HA >2700 m) is reduction in fetal growth. Reduced fetoplacental oxygenation is an underlying cause of pregnancy pathologies, including intrauterine growth restriction and preeclampsia, which are more common at HA. Therefore, altitude is a natural experimental model to study the etiology of pregnancy pathophysiologies.
View Article and Find Full Text PDFFetal growth is decreased at high altitude (> 2700 m). We hypothesized that variation in fetal O(2) delivery might account for both the altitude effect and the relative preservation of fetal growth in multigenerational natives to high altitude. Participants were 168 women of European or Andean ancestry living at 3600 m or 400 m.
View Article and Find Full Text PDFFetal growth is reduced at high altitude, but the decrease is less among long-resident populations. We hypothesized that greater maternal uteroplacental O(2) delivery would explain increased fetal growth in Andean natives versus European migrants to high altitude. O(2) delivery was measured with ultrasound, Doppler and haematological techniques.
View Article and Find Full Text PDFUrechites andrieuxii Muell.-Arg. (Apocynaceae) is widely used in the Yucatan Peninsula for the treatment of cutaneous leishmaniasis.
View Article and Find Full Text PDFLactate dehydrogenase (LDH) is a tetramer made up of two different subunits A and B. In cellular models, severe hypoxia increases LDH A gene expression whereas LDH B gene does not exhibit any regulation. The aim of our work was to characterise LDH expression in different tissues of rats bred at high altitude.
View Article and Find Full Text PDF