Publications by authors named "Elfrida Benjamin"

Article Synopsis
  • Cipaglucosidase alfa plus miglustat (cipa + mig) is a new two-part treatment for Pompe disease, assessed in the Phase I/II ATB200-02 study over 48 months.
  • The study involved four adult groups, including both ambulating and non-ambulating patients, who received specific doses of cipa and mig biweekly.
  • Results showed improvements in walking distances and respiratory capacity, especially in ERT-naïve patients, with the treatment generally well tolerated and a safety profile similar to existing therapies.
View Article and Find Full Text PDF

Purpose: Outcomes in patients with Fabry disease receiving migalastat during the phase 3 FACETS trial (NCT00925301) were evaluated by phenotype.

Methods: Data were evaluated in two subgroups of patients with migalastat-amenable GLA variants: "classic phenotype" (n = 14; males with residual peripheral blood mononuclear cell α-galactosidase A <3% normal and multiorgan system involvement) and "other patients" (n = 36; males not meeting classic phenotype criteria and all females). Endpoints included estimated glomerular filtration rate (eGFR), left ventricular mass index (LVMi), Gastrointestinal Symptoms Rating Scale diarrhea subscale (GSRS-D), renal peritubular capillary (PTC) globotriaosylceramide (GL-3) inclusions, and plasma globotriaosylsphingosine (lyso-Gb).

View Article and Find Full Text PDF

Purpose: To test the hypothesis that undiagnosed patients with Fabry disease exist among patients affected by common heart disease.

Methods: Globotriaosylceramide in random whole urine using tandem mass spectroscopy, α-galactosidase A activity in dried blood spots, and next-generation sequencing of pooled or individual genomic DNA samples supplemented by Sanger sequencing.

Results: We tested 2,256 consecutive patients: 852 women (median age 65 years (19-95)) and 1,404 men (median age 65 years (21-92)).

View Article and Find Full Text PDF

Objective: Deficiency of α-galactosidase A (αGal-A) in Fabry disease leads to the accumulation mainly of globotriaosylceramide (GL3) in multiple renal cell types. Glomerular podocytes are relatively resistant to clearance of GL3 inclusions by enzyme replacement therapy (ERT). Migalastat, an orally bioavailable small molecule capable of chaperoning misfolded αGal-A to lysosomes, is approved in the European Union for the long-term treatment of patients with Fabry disease and amenable (α-galactosidase A enzyme) mutations.

View Article and Find Full Text PDF

Gaucher disease (GD) is caused by mutations in the GBA1 gene that encodes the lysosomal enzyme acid β-glucosidase (GCase). Reduced GCase activity primarily leads to the accumulation of two substrates, glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Current treatment options have not been shown to ameliorate the neurological pathology observed in the most severe forms of GD, clearly representing an unmet medical need.

View Article and Find Full Text PDF

Duvoglustat HCl (AT2220, 1-deoxynojirimycin) is an investigational pharmacological chaperone for the treatment of acid α-glucosidase (GAA) deficiency, which leads to the lysosomal storage disorder Pompe disease, which is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. The current standard of care is enzyme replacement therapy with recombinant human GAA (alglucosidase alfa [AA], Genzyme). Based on preclinical data, oral co-administration of duvoglustat HCl with AA increases exposure of active levels in plasma and skeletal muscles, leading to greater substrate reduction in muscle.

View Article and Find Full Text PDF

Background: Fabry disease is an X-linked lysosomal storage disorder caused by mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement therapy (ERT), stabilises specific mutant () forms of α-Gal to facilitate normal lysosomal trafficking.

Methods: The main objective of the 18-month, randomised, active-controlled ATTRACT study was to assess the effects of migalastat on renal function in patients with Fabry disease previously treated with ERT.

View Article and Find Full Text PDF

Purpose: Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene. Migalastat, a pharmacological chaperone, binds to specific mutant forms of α-galactosidase A to restore lysosomal activity.

Methods: A pharmacogenetic assay was used to identify the α-galactosidase A mutant forms amenable to migalastat.

View Article and Find Full Text PDF

Background: Fabry's disease, an X-linked disorder of lysosomal α-galactosidase deficiency, leads to substrate accumulation in multiple organs. Migalastat, an oral pharmacologic chaperone, stabilizes specific mutant forms of α-galactosidase, increasing enzyme trafficking to lysosomes.

Methods: The initial assay of mutant α-galactosidase forms that we used to categorize 67 patients with Fabry's disease for randomization to 6 months of double-blind migalastat or placebo (stage 1), followed by open-label migalastat from 6 to 12 months (stage 2) plus an additional year, had certain limitations.

View Article and Find Full Text PDF

Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene that encodes α-galactosidase A and is characterized by pathological accumulation of globotriaosylceramide and globotriaosylsphingosine. Earlier, the authors demonstrated that oral coadministration of the pharmacological chaperone AT1001 (migalastat HCl; 1-deoxygalactonojirimycin HCl) prior to intravenous administration of enzyme replacement therapy improved the pharmacological properties of the enzyme. In this study, the authors investigated the effects of coformulating AT1001 with a proprietary recombinant human α-galactosidase A (ATB100) into a single intravenous formulation.

View Article and Find Full Text PDF

Background: Elevated urinary globotriaosylceramide (Gb3) has been considered a hallmark of Fabry disease, an X-linked lysosomal disorder that is a risk factor for most types of heart disease.

Methods And Results: We screened 1421 consecutive patients with common forms of heart disease for Fabry disease by measuring urinary Gb3 in whole urine using tandem mass spectrometry, α-galactosidase A activity in dried blood spots, and we looked for GLA mutations by parallel sequencing of the whole gene (exons and introns) in pooled genomic DNA samples followed by Sanger sequencing verification. GLA variants were found in 13 patients.

View Article and Find Full Text PDF

Fabry disease (FD) results from mutations in the gene (GLA) that encodes the lysosomal enzyme α-galactosidase A (α-Gal A), and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb3). Migalastat hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of α-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of some FD patients.

View Article and Find Full Text PDF

Lysosomal enzymes are responsible for the degradation of a wide variety of glycolipids, oligosaccharides, proteins, and glycoproteins. Inherited mutations in the genes that encode these proteins can lead to reduced stability of newly synthesized lysosomal enzymes. While often catalytically competent, the mutated enzymes are unable to efficiently pass the quality control mechanisms of the endoplasmic reticulum, resulting in reduced lysosomal trafficking, substrate accumulation, and cellular dysfunction.

View Article and Find Full Text PDF

Fabry disease is an X-linked lysosomal storage disorder (LSD) caused by mutations in the gene (GLA) that encodes the lysosomal hydrolase α-galactosidase A (α-Gal A), and is characterized by pathological accumulation of the substrate, globotriaosylceramide (GL-3). Regular infusion of recombinant human α-Gal A (rhα-Gal A), termed enzyme replacement therapy (ERT), is the primary treatment for Fabry disease. However, rhα-Gal A has low physical stability, a short circulating half-life, and variable uptake into different disease-relevant tissues.

View Article and Find Full Text PDF

The aim of our study was to measure globotriaosylceramide (Gb(3)) and lyso-Gb(3) levels by tandem mass spectrometry in the urine and kidney in Fabry (gla knockout) mice and wild-type controls. We found that urine Gb(3) of male and female Fabry mice was higher than wild-type mice of the same sex but also significantly higher in male mice compared with females of the same genotype. In kidney tissue, sex and genotype-dependent differences in Gb(3) levels paralleled those in the urine.

View Article and Find Full Text PDF

Many human diseases result from mutations in specific genes. Once translated, the resulting aberrant proteins may be functionally competent and produced at near-normal levels. However, because of the mutations, the proteins are recognized by the quality control system of the endoplasmic reticulum and are not processed or trafficked correctly, ultimately leading to cellular dysfunction and disease.

View Article and Find Full Text PDF

Fabry disease is caused by mutations in the gene (GLA) that encodes α-galactosidase A (α-Gal A). The iminosugar AT1001 (GR181413A, migalastat hydrochloride, 1-deoxygalactonojirimycin) is a pharmacological chaperone that selectively binds and stabilizes α-Gal A, increasing total cellular levels and activity for some mutant forms (defined as "responsive"). In this study, we developed a cell-based assay in cultured HEK-293 cells to identify mutant forms of α-Gal A that are responsive to AT1001.

View Article and Find Full Text PDF

Gaucher disease is caused by mutations in the gene that encodes the lysosomal enzyme acid beta-glucosidase (GCase). We have shown previously that the small molecule pharmacological chaperone isofagomine (IFG) binds and stabilizes N370S GCase, resulting in increased lysosomal trafficking and cellular activity. In this study, we investigated the effect of IFG on L444P GCase.

View Article and Find Full Text PDF

Pompe disease is a lysosomal storage disorder (LSD) caused by mutations in the gene that encodes acid alpha-glucosidase (GAA). Recently, small molecule pharmacological chaperones have been shown to increase protein stability and cellular levels for mutant lysosomal enzymes and have emerged as a new therapeutic strategy for the treatment of LSDs. In this study, we characterized the pharmacological chaperone 1-deoxynojirimycin (DNJ) on 76 different mutant forms of GAA identified in Pompe disease.

View Article and Find Full Text PDF

Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency in alpha-galactosidase A (alpha-Gal A) activity and subsequent accumulation of the substrate globotriaosylceramide (GL-3), which contributes to disease pathology. The pharmacological chaperone (PC) DGJ (1-deoxygalactonojirimycin) binds and stabilizes alpha-Gal A, increasing enzyme levels in cultured cells and in vivo. The ability of DGJ to reduce GL-3 in vivo was investigated using transgenic (Tg) mice that express a mutant form of human alpha-Gal A (R301Q) on a knockout background (Tg/KO), which leads to GL-3 accumulation in disease-relevant tissues.

View Article and Find Full Text PDF

The N-type voltage-gated calcium channel (Ca(v)2.2) functions in neurons to regulate neurotransmitter release. It comprises a clinically relevant target for chronic pain.

View Article and Find Full Text PDF

Voltage-gated Na(+) channels may play important roles in establishing pathological neuronal hyperexcitability associated with chronic pain in humans. Na(+) channel blockers, such as carbamazepine (CBZ) and lamotrigine (LTG), are efficacious in treating neuropathic pain; however, their therapeutic utility is compromised by central nervous system side effects. We reasoned that it may be possible to gain superior control over pain states and, in particular, a better therapeutic index, by designing broad-spectrum Na(+) channel blockers with higher potency, faster onset kinetics, and greater levels of state dependence than existing drugs.

View Article and Find Full Text PDF

Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution.

View Article and Find Full Text PDF

A fluorescent imaging plate reader (FLIPR) membrane potential (V(m)) assay was evaluated for pharmacological characterization and high-throughput screening (HTS) of rat glycine transporter type 2 (rGlyT(2)) in a stable rGlyT(2)-HEK cell line. Data show that glycine activation of rGlyT(2) consistently results in a concentration-dependent V(m) response on the FLIPR that is blocked by the potent and selective GlyT(2) antagonist 4-benzyloxy-3,5-dimethoxy-N-[1-dimethylamino-cyclopentyl)methyl]-benz-amide (Org-25543). Agonist and antagonist pharmacologies match those reported using conventional [(3)H]glycine uptake assays and electrophysiology.

View Article and Find Full Text PDF