Articular cartilage (AC) has poor capacities of regeneration and lesions often lead to osteoarthritis. Current AC reconstruction implies autologous chondrocyte implantation which requires tissue sampling and grafting. An alternative approach would be to use scaffolds containing off-the-shelf allogeneic human articular chondrocytes (HACs).
View Article and Find Full Text PDFHuman T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process.
View Article and Find Full Text PDFThe human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4).
View Article and Find Full Text PDFThe first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1), is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.
View Article and Find Full Text PDFLocal protein synthesis in dendrites contributes to the synaptic modifications underlying learning and memory. The mRNA encoding the α subunit of the calcium/calmodulin dependent Kinase II (CaMKIIα) is dendritically localized and locally translated. A role for CaMKIIα local translation in hippocampus-dependent memory has been demonstrated in mice with disrupted CaMKIIα dendritic translation, through deletion of CaMKIIα 3'UTR.
View Article and Find Full Text PDF