To cope with climate change, agricultural territories are forced to implement adaptation strategies, including the implementation of irrigation infrastructures. These strategies are deployed over a long term, and their environmental performance may vary in time and space due to climate change. Environmental assessment methods that include spatio-temporal dynamics must be developed to identify long term "no-regret" scenarios.
View Article and Find Full Text PDFLand is a key resource for human activities under growing pressure. Resource criticality assessment methods investigate the extent to which a resource may become a limiting factor according to various dimensions, including geological, economic and geopolitical availability. They have been applied to resources like minerals, fossil fuels, biotic material or water, but none consider land resources, i.
View Article and Find Full Text PDFGlobal value chains and climate change have a significant impact on water resources and increasingly threaten freshwater ecosystems. Recent methodological proposals for life cycle impact assessment (LCIA), evaluate water use impacts on freshwater habitats based on river hydraulic parameters alterations. However, they are limited to French rivers due to lack of global data and models.
View Article and Find Full Text PDFIn this article a new characterization model and factors are proposed for the life cycle impact assessment (LCIA) of water consumption on instream freshwater ecosystems. Impact pathways of freshwater consumption leading to ecosystem damage are described and the alteration of instream physical habitat is identified as a critical midpoint for ecosystem quality. The LCIA characterization model aims to assess the change in habitat quantity due to consumptive water use.
View Article and Find Full Text PDFFreshwater comes from different sources unevenly distributed over time and space around the world and plays a key role in the planning of all social and economic sectors on a regional scale. In this context, a consistent framework for modeling regional water supply mix (WSmix) at a worldwide scale has already been developed for use in life cycle assessment (LCA). However, changes in water sources, driven by climate and socio-economic changes, will occur, affecting WSmix.
View Article and Find Full Text PDFNormalisation is an optional step in Life Cycle Assessment (LCA), often used in decision making since it helps interpreting the results of LCA studies with regard to some reference information. The applicable ISO standard recommends considering different reference systems to guarantee the robustness of the normalisation step, and so the availability of different normalisation datasets becomes of high relevance. Life Cycle Impact Assessment (LCIA) methods provide normalisation factors (NFs) for global and regional areas, but no NFs are proposed for smaller areas such as local or subnational scales.
View Article and Find Full Text PDFOn a previous study, the carbon footprint (CF) of all production and consumption activities of Galicia, an Autonomous Community located in the north-west of Spain, was determined and the results were used to devise strategies aimed at the reduction and mitigation of the greenhouse gas (GHG) emissions. The territorial LCA methodology was used there to perform the calculations. However, that methodology was initially designed to compute the emissions of all types of polluting substances to the environment (several thousands of substances considered in the life cycle inventories), aimed at performing complete LCA studies.
View Article and Find Full Text PDFGalicia is an Autonomous Community located in the north-west of Spain. As a starting point to implement mitigation and adaptation measures to climate change, a regional greenhouse gas (GHG) inventory is needed. So far, the only regional GHG inventories available are limited to the territorial emissions of those production activities which are expected to cause major environmental degradation.
View Article and Find Full Text PDFWater is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS).
View Article and Find Full Text PDFIn order to reduce our environmental impact, methods for environmental assessment of human activities are urgently needed. In particular in the case of assessment of land planning scenarios, there is presently no consensual and widely adopted method although it is strongly required by the European Directive (2001/42/EC) on Strategic Environmental Assessment. However, different kinds of tools and methods are available such as human and environmental risk assessment, the ecological footprint, material flow analysis, substance flow analysis, physical input-output table, ecological network analysis, exergy, emergy or life cycle assessment.
View Article and Find Full Text PDF