Publications by authors named "Eleonore Lambert"

Due to an aging population, neurodegenerative diseases such as Alzheimer's disease (AD) have become a major health issue. In the case of AD, Aβ peptides have been identified as one of the markers of the disease with the formation of senile plaques via their aggregation, and could play a role in memory impairment and other tragic syndromes associated with the disease. Many studies have shown that not only the morphology and structure of Aβ peptide assembly are playing an important role in the formation of amyloid plaques, but also the interactions between Aβ and the cellular membrane are crucial regarding the aggregation processes and toxicity of the amyloid peptides.

View Article and Find Full Text PDF

Nanoparticles attract much interest as fluorescent labels for diagnostic and therapeutic tools, although their applications are often hindered by size- and shape-dependent cytotoxicity. This cytotoxicity is related not only to the leak of toxic metals from nanoparticles into a biological solution, but also to molecular cytotoxicity effects determined by the formation of a protein corona, appearance of an altered protein conformation leading to exposure of cryptic epitopes and cooperative effects involved in the interaction of proteins and peptides with nanoparticles. In the last case, nanoparticles may serve, depending on their nature, as centers of self-association or fibrillation of proteins and peptides, provoking amyloid-like proteinopathies, or as inhibitors of self-association of proteins, or they can self-assemble on biopolymers as on templates.

View Article and Find Full Text PDF

Lignocellulosic biomass is considered as a sustainable source of energy and chemicals, but its recalcitrance to bioconversion still limits its use. In this paper, a strategy based on two aspects was developed to improve our knowledge on the lignin recalcitrance to enzymatic hydrolysis. First, lignocellulosic films of cellulose nanofibrils (CNFs) with increasing content of lignin (up to 40%) were prepared.

View Article and Find Full Text PDF

Tetrastatin, a 230 amino acid sequence from collagen IV, was previously demonstrated to inhibit melanoma progression. In the present paper, we identified the minimal active sequence (QKISRCQVCVKYS: QS-13) that reproduced the anti-tumor effects of whole Tetrastatin in vivo and in vitro on melanoma cell proliferation, migration and invasion. We demonstrated that QS-13 binds to SK-MEL-28 melanoma cells through the αβ integrin using blocking antibody and β3 integrin subunit siRNAs strategies.

View Article and Find Full Text PDF