Publications by authors named "Eleonora Zorzan"

Gene expression is controlled by epigenetic deregulation, a hallmark of cancer. The DNA methylome of canine diffuse large B-cell lymphoma (cDLBCL), the most frequent malignancy of B-lymphocytes in dog, has recently been investigated, suggesting that aberrant hypermethylation of CpG loci is associated with gene silencing. Here, we used a multi-omics approach (DNA methylome, transcriptome and copy number variations) combined with functional in vitro assays, to identify putative tumour suppressor genes subjected to DNA methylation in cDLBCL.

View Article and Find Full Text PDF

The regulation of conformational arrangements of gene promoters is a physiological mechanism that has been associated with the fine control of gene expression. Indeed, it can drive the time and the location for the selective recruitment of proteins of the transcriptional machinery. Here, we address this issue at the proximal promoter where three G-quadruplex forming sites are present (kit1, kit2 and kit*).

View Article and Find Full Text PDF

The Venice Lagoon is an interesting example of an ecosystem suffering for a considerable anthropogenic impact, resulting in high concentrations of persistent organic pollutants (POPs) in lagoon sediments and seafood. In this context, biomonitoring is a crucially important task. The present study aimed at evaluating the validity of a multiple biomarker approach in a benthic fish species.

View Article and Find Full Text PDF

Despite canine B-cell Lymphoma (BCL) representing the most common haematological tumour, epigenetic events driving development and progression are scarcely known. Recently, canine Diffuse Large BCL (DLBCL) DNA methylome by genome-wide CpG microarray has identified genes and pathways associated to pathogenesis. To validate data previously obtained by array analysis, the CLBL-1 cell line was used and the HOXD10, FGFR2, ITIH5 and RASAL3 genes were selected.

View Article and Find Full Text PDF

G-quadruplexes (G4) are secondary nucleic acid structures that have been associated with genomic instability and cancer progression. When present in the promoter of some oncogenes, G4 structures can affect gene regulation and, hence, represent a possible therapeutic target. In this study, RNA-Seq was used to explore the effect of a G4-binding anthraquinone derivative, named AQ1, on the whole-transcriptome profiles of two common cell models for the study of KIT pathways; the human mast cell leukemia (HMC1.

View Article and Find Full Text PDF

G-quadruplexes (G4) are nucleic acid secondary structures frequently assumed by G-rich sequences located mostly at telomeres and proto-oncogenes promoters. Recently, we identified, in canine (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) promoter, two G-rich sequences able to fold into G4: d_kit1 and d_kit2_A16. In this study, an anthraquinone (AQ1) and an anthracene derivative (AN6), known to stabilize the G4 structures of the corresponding human h_kit1 and h_kit2, were tested on the canine G4 and in two canine mast cell tumor (MCT) cell lines (C2 and NI-1) to verify their capability to down-regulate expression.

View Article and Find Full Text PDF

Stabilization of G-quadruplex (G4) structures in promoters is a novel promising strategy to regulate gene expression at transcriptional and translational levels. c-KIT proto-oncogene encodes for a tyrosine kinase receptor. It is involved in several physiological processes, but it is also dysregulated in many diseases, including cancer.

View Article and Find Full Text PDF

Introduction: Both canine cutaneous mast cell tumor (MCT) and human systemic mastocytosis (SM) are characterized by abnormal proliferation and accumulation of mast cells in tissues and, frequently, by the presence of activating mutations in the receptor tyrosine kinase V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (c-KIT), albeit at different incidence (>80% in SM and 10-30% in MCT). In the last few years, it has been discovered that additional mutations in other genes belonging to the methylation system, the splicing machinery and cell signaling, contribute, with c-KIT, to SM pathogenesis and/or phenotype. In the present study, the mutational profile of the Tet methylcytosine dioxygenase 2 (TET2), the isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2), the serine/arginine-rich splicing factor 2 (SRSF2), the splicing factor 3b subunit 1 (SF3B1), the Kirsten rat sarcoma viral oncogene homolog (KRAS) and the neuroblastoma RAS viral oncogene homolog (NRAS), commonly mutated in human myeloid malignancies and mastocytosis, was investigated in canine MCTs.

View Article and Find Full Text PDF

Downregulation of gene expression by induction of non-canonical DNA structures at promotorial level is a novel attractive anticancer strategy. In human, two guanine-rich sequences (h_kit1 and h_kit2) were identified in the promotorial region of oncogene KIT. Their stabilization into G-quadruplex structures can find applications in the treatment of leukemias, mastocytosis, gastrointestinal stromal tumor, and lung carcinomas which are often associated to c-kit mis-regulation.

View Article and Find Full Text PDF

Formalin-fixed, paraffin-embedded (FFPE) tissues represent a unique source of archived biological material, but obtaining suitable DNA and RNA for retrospective "-omic" investigations is still challenging. In the current study, canine tumor FFPE blocks were used to 1) compare common commercial DNA and RNA extraction kits; 2) compare target gene expression measured in FFPE blocks and biopsies stored in a commercial storage reagent; 3) assess the impact of fixation time; and 4) perform biomolecular investigations on archival samples chosen according to formalin fixation times. Nucleic acids yield and quality were determined by spectrophotometer and capillary electrophoresis, respectively.

View Article and Find Full Text PDF