Complex karyotype (CK) at chronic lymphocytic leukemia (CLL) diagnosis is a negative biomarker of adverse outcome. Since the impact of CK and its subtypes, namely type-2 CK (CK with major structural abnormalities) or high-CK (CK with ≥5 chromosome abnormalities), on the risk of developing Richter syndrome (RS) is unknown, we carried out a multicenter real-life retrospective study to test its prognostic impact. Among 540 CLL patients, 107 harbored a CK at CLL diagnosis, 78 were classified as CK2 and 52 as high-CK.
View Article and Find Full Text PDFMediterr J Hematol Infect Dis
September 2019
In 2014 a 66-year-old woman presented with anemia and an IgAk monoclonal spike. Bone marrow (BM) biopsy showed 80% lymphocytes and lymphoplasmacytoid cells. Computed Tomography (CT) scan documented neither adenopathy nor splenomegaly.
View Article and Find Full Text PDFBackground: Complex karyotype (CK) is a heterogeneous category with a negative impact in chronic lymphocytic leukaemia (CLL). Our group has recently reported that CK patients with major structural abnormalities (i.e.
View Article and Find Full Text PDFThe complex karyotype (CK) is an established negative prognostic marker in a number of haematological malignancies. After the introduction of effective mitogens, a growing body of evidence has suggested that the presence of 3 or more aberrations by conventional banding analysis (CBA) is associated with an unfavorable outcome in chronic lymphocytic leukemia (CLL). Thus, the importance of CBA was recognized by the 2018 guidelines of the International Workshop on CLL, which proposed the introduction of CBA in clinical trials to validate the value of karyotype aberrations.
View Article and Find Full Text PDFBr J Haematol
April 2018
Complex karyotype (CK) is a negative prognostic factor in chronic lymphocytic leukaemia (CLL). However, CK is a heterogeneous cytogenetic category. Unbalanced rearrangements were present in 73·3% of 90 CLL patients with CK (i.
View Article and Find Full Text PDFOncotarget
April 2017
We investigated whether karyotype analysis and mutational screening by next generation sequencing could predict outcome in 101 newly diagnosed chronic lymphocytic leukemia patients with high-risk features, as defined by the presence of unmutated IGHV gene and/or 11q22/17p13 deletion by FISH and/or TP53 mutations. Cytogenetic analysis showed favorable findings (normal karyotype and isolated 13q14 deletion) in 30 patients, unfavorable (complex karyotype and/or 17p13/11q22 deletion) in 34 cases and intermediate (all other abnormalities) in 36 cases. A complex karyotype was present in 21 patients.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) displays an extremely variable clinical behaviour. Accurate prognostication and prediction of response to treatment are important in an era of effective first-line regimens and novel molecules for high risk patients. Because a plethora of prognostic biomarkers were identified, but few of them were validated by multivariable analysis in comprehensive prospective studies, we applied in this survey stringent criteria to select papers from the literature in order to identify the most reproducible prognostic/predictive markers.
View Article and Find Full Text PDFBackground: In chronic lymphocytic leukemia (CLL), next-generation sequencing (NGS) analysis represents a sensitive, reproducible, and resource-efficient technique for routine screening of gene mutations.
Methods: We performed an extensive biologic characterization of newly diagnosed CLL, including NGS analysis of 20 genes frequently mutated in CLL and karyotype analysis to assess whether NGS and karyotype results could be of clinical relevance in the refinement of prognosis and assessment of risk of progression. The genomic DNA from peripheral blood samples of 200 consecutive CLL patients was analyzed using Ion Torrent Personal Genome Machine, a NGS platform that uses semiconductor sequencing technology.
To clarify whether karyotype aberrations (KA) involving regions not covered by the standard fluorescence in situ hybridization (FISH) panel have independent prognostic relevance, we evaluated KA by conventional cytogenetics in a learning cohort (LC; n = 166) and a validation cohort (VC; n = 250) of untreated chronic lymphocytic leukemia (CLL) patients. In the VC, novel mitogens were used to improve metaphase generation and TP53, NOTCH1, and SF3B1 mutations were assessed. KA undetected by FISH were found in 35 and 35% of the cases in the LC and VC, respectively.
View Article and Find Full Text PDFThe possibility that human mesenchymal stromal cells (hMSC) may derive from the malignant clone in hematological malignancies (HM) is a controversial issue. In order to clarify hMSC origin and disclose possible cytogenetic heterogeneity in hMSC belonging to different patients, bone marrow (BM)-derived hMSC samples from chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL) were expanded in culture, characterized by flow cytometry, and screened by conventional cytogenetic analysis and fluorescent in situ hybridization for the presence of possible cytogenetic aberrations, related or not to the hematopoietic neoplastic clone. Our data showed that the presence of cytogenetic aberrations in successfully expanded HM-MSC stromal layers derives from the persistence of contaminating hemopoietic cells (HC), which is greatly supported by in vitro culture conditions that could mimic in vivo microenvironmental niche.
View Article and Find Full Text PDFTo compare the efficiency of novel mitogenic agents and traditional mitosis inductors, 18 patients with splenic marginal zone lymphoma (SMZL) were studied. Three cultures using oligodeoxynucleotide (ODN) plus interleukin-2 (IL-2), or TPA, or LPS were setup in each patient. Seventeen/18 cases with ODN + IL2 had moderate/good proliferation (94, 4%) as compared with 10/18 cases with TPA and LPS (55%) (P = .
View Article and Find Full Text PDF