Publications by authors named "Eleonora Soco"

The removal of hazardous heavy metals that have been released into the environment due to industrial activities has become an important issue in recent years. The presented study concerned the removal of copper(II) ions from aqueous solutions using dolomites. Dolomite is a very attractive adsorbent due to its wide availability, low cost, good adsorption, and environmental compatibility.

View Article and Find Full Text PDF

A very low concentration of manganese (Mn) in water is a critical issue for municipal and industrial water supply systems. Mn removal technology is based on the use of manganese oxides (MnO), especially manganese dioxide (MnO) polymorphs, under different conditions of pH and ionic strength (water salinity). The statistical significance of the impact of polymorph type (akhtenskite ε-MnO, birnessite δ-MnO, cryptomelane α-MnO and pyrolusite β-MnO), pH (2-9) and ionic strength (1-50 mmol/L) of solution on the adsorption level of Mn was investigated.

View Article and Find Full Text PDF

The aim of the research was to characterize the parameters of the diatomite sorbent Absodan Plus as well as to assess its suitability for the adsorption of chromates and phosphates from acidic aqueous solutions simulating the conditions occurring in some types of industrial wastewater. The scope of the research includes XRD, SEM, BET, and PZC analyses, and 3D observation of commercial diatomite granules and batch tests to determine the constants of kinetics and the equilibrium of chromates and phosphates adsorption. Absodan Plus is a diatomite commercial material containing an amorphous phase (33%) and is also the crystalline phase of quartz, hematite, and grossite.

View Article and Find Full Text PDF

Activated coal fly ash (FA) treated with NaOH and hexadecyltrimethylammonium bromide (HDTMABr) was used as adsorbent for removal of cadmium(II) ions and rhodamine B (RB) from an aqueous solution. Characterization of fly ash and FA-HDTMABr were done using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The sorption equilibrium in the system was analysed using isotherm models, such as Freundlich, Langmuir, generalized Langmuir-Freundlich, Redlich-Peterson, Jovanović, extended Jovanović, Tóth, Frumkin-Fowler-Guggenheim, Fowler-Guggenheim-Jovanović-Freundlich, Temkin, Dubinin-Radushkevich, Halsey, Brunauer, Emmett and Teller.

View Article and Find Full Text PDF

It was found that the chemical enhancement of fly ash from coal combustion by tetrabutylammonium bromide treatment yields an effective and economically feasible material for the treatment of chromium and basic dye Rhodamine B containing effluents. Characterisation of coal fly ash and treatment with tetrabutylammonium bromide were done by using a Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, confocal three-dimensional microscope, X-ray diffraction and laser particle sizer. The studies of equilibrium in a bi-component system by means of extended Langmuir, extended Langmuir-Freundlich and Jain-Snoeyink models were analysed.

View Article and Find Full Text PDF

The quantitative evaluation of chemical fraction of Cu and Zn in the coal fly ash by methods of five-step sequential extraction was carried out in order to characterize metal mobility in environmental conditions. The research involved (i) water-soluble (pH 7), (ii) acid-soluble (pH 5), (iii) oxide, (iv) difficult reducible and (v) residual metal fractions. It was discovered, that the total extraction of the studied metals from coal fly ash to solutions take place in the following quantities Cu-39.

View Article and Find Full Text PDF

The quantitative evaluation of chemical fraction of Co and Ni in the industrial fly ash by methods of five step sequential extraction was carried out in order to characterize metal mobility in environmental conditions. The research involved (i) water-soluble (pH=7), (ii) acid-soluble (pH=5), (iii) oxide, (iv) sulfide and (v) residue metal fractions. It was discovered, that the total extraction of the studied metals from fly ash to solutions take place in the following quantities Co - 35.

View Article and Find Full Text PDF