Publications by authors named "Eleonora Mustorgi"

Cystic fibrosis (CF) is caused by different mutations related to the cystic fibrosis transmembrane regulator protein (CFTR), with F508del being the most common. Pioneering the development of CFTR modulators, thanks to the development of effective correctors or potentiators, more recent studies deeply encouraged the administration of triple combination therapeutics. However, combinations of molecules interacting with other proteins involved in functionality of the CFTR channel recently arose as a promising approach to address a large rescue of F508del-CFTR.

View Article and Find Full Text PDF

Water activity is an important phenomenon not yet explained in terms of water molecular structure. This paper aims to find the relationship between the water activity and water molecular structure of the rice germ, based on its spectral pattern which can be measured using non-destructive technology. Aquaphotomics near-infrared spectroscopy was used to study rice germ stored at different levels of water activity and atmosphere.

View Article and Find Full Text PDF

Cheese represents one of the most complex food matrices, for the high number of factors contributing to the chemical composition, and so its evaluation represents an important analytical challenge. The present study describes an innovative and non-destructive analytical approach, based on hyperspectral imaging in the near-infrared region (HSI-NIR) and multivariate pattern recognition, to study and monitor the extent - spatial and temporal - of biochemical phenomena responsible for cheese ripening. NIR spectral bands characterising dehydration, proteolysis and lipolysis were individuated and studied by exploiting a representative sample set of characteristic cheeses.

View Article and Find Full Text PDF

In this study, an alternative analytical approach for analyzing and characterizing green tea (GT) samples is proposed, based on the combination of excitation-emission matrix (EEM) fluorescence spectroscopy and multivariate chemometric techniques. The three-dimensional spectra of 63 GT samples were recorded using a Perkin-Elmer LS55 luminescence spectrometer; emission spectra were recorded between 295 and 800 nm at excitation wavelength ranging from 200 to 290 nm, with excitation and emission slits both set at 10 nm. The excitation and emission profiles of two factors were obtained using Parallel Factor Analysis (PARAFAC) as a 3-way decomposition method.

View Article and Find Full Text PDF